《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(上)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(上)

作者:邹云鹤


用户背景

BIGO 是一家面向海外的以短视频直播业务为主的公司, 目前公司的主要业务包括 BigoLive (全球直播服务),Likee (短视频创作分享平台),IMO (免费通信工具) 三部分,在全球范围内拥有 4 亿用户。


业务需求

伴随着BIGO业务的发展,对数据平台处理能力的要求越来越高,平台所面临的问题也日益凸显。BIGO 大数据平台的数据流转图如下所示:


image.png


用户在 APP,Web 页面上的行为日志数据以及关系数据库的 Binlog 数据会被同步到 BIGO 大数据平台消息队列以及离线存储系统中,然后通过实时和离线的数据分析手段进行计算,以应用于实时推荐、监控、即席查询等使用场景。其中存在以下几个问题:


OLAP 分析平台入口不统一:Presto/Spark 分析任务入口并存,用户不清楚自己的 SQL 查询适合哪个引擎执行,盲目选择,体验不好;另外,用户会在两个入口同时提交相同查询以更快的获取查询结果,导致资源浪费;


离线任务计算时延高,结果产出太慢:典型的如 ABTest 业务,经常计算到下午才计算出结果;


各个业务方基于自己的业务场景独立开发应用,实时任务烟囱式的开发,缺少数据分层,数据血缘。


平台建设

基于业务需求和问题,BIGO 大数据平台建设了 OneSQL OLAP 分析平台,以及实时数仓。  


通过 OneSQL OLAP 分析平台,统一 OLAP 查询入口,减少用户盲目选择,提升平台的资源利用率;

通过 Flink 构建实时数仓任务,通过 Kafka/Pulsar 进行数据分层;

将部分离线计算慢的任务迁移到 Flink 流式计算任务上,加速计算结果的产出;  


此外通过建设实时计算平台 Bigoflow 管理这些实时计算任务,建设实时任务的血缘关系。  


OneSQL OLAP 分析平台实践和优化  


OneSQL OLAP 分析平台是一个集 Flink、Spark、Presto 于一体的 OLAP 查询分析引擎。用户提交的 OLAP 查询请求通过 OneSQL 后端转发到不同执行引擎的客户端,然后提交对应的查询请求到不同的集群上执行。其整体架构图如下:

image.png

该分析平台整体结构从上到下分为入口层、转发层、执行层、资源管理层。为了优化用户体验,减少执行失败的概率,提升各集群的资源利用率,OneSQL OLAP 分析平台实现了以下功能:  


统一查询入口:入口层,用户通过统一的 Hue 查询页面入口以 Hive SQL 语法为标准提交查询;

统一查询语法:集 Flink、Spark、Presto 等多种查询引擎于一体,不同查询引擎通过适配 Hive SQL 语法来执行用户的 SQL 查询任务;

智能路由:在选择执行引擎的过程中,会根据历史 SQL 查询执行的情况 (在各引擎上是否执行成功,以及执行耗时),各集群的繁忙情况,以及各引擎对该 SQL 语法的是否兼容,来选择合适的引擎提交查询;

失败重试:OneSQL 后台会监控 SQL 任务的执行情况,如果 SQL 任务在执行过程中失败,将选择其他的引擎执行重试提交任务;  


通过 OneSQL OLAP 分析平台,BIGO 大数据平台实现了 OLAP 分析入口的统一,减少用户的盲目选择,同时充分利用各个集群的资源,减少资源空闲情况。  


《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(下)


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
17天前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
192 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
206 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
2月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
826 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
3月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
315 6
|
3月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
281 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
3月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
367 9
Apache Flink:从实时数据分析到实时AI
|
3月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
296 0
|
11月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
733 33
The Past, Present and Future of Apache Flink
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1534 13
Apache Flink 2.0-preview released

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多