《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(上)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(上)

作者:邹云鹤


用户背景

BIGO 是一家面向海外的以短视频直播业务为主的公司, 目前公司的主要业务包括 BigoLive (全球直播服务),Likee (短视频创作分享平台),IMO (免费通信工具) 三部分,在全球范围内拥有 4 亿用户。


业务需求

伴随着BIGO业务的发展,对数据平台处理能力的要求越来越高,平台所面临的问题也日益凸显。BIGO 大数据平台的数据流转图如下所示:


image.png


用户在 APP,Web 页面上的行为日志数据以及关系数据库的 Binlog 数据会被同步到 BIGO 大数据平台消息队列以及离线存储系统中,然后通过实时和离线的数据分析手段进行计算,以应用于实时推荐、监控、即席查询等使用场景。其中存在以下几个问题:


OLAP 分析平台入口不统一:Presto/Spark 分析任务入口并存,用户不清楚自己的 SQL 查询适合哪个引擎执行,盲目选择,体验不好;另外,用户会在两个入口同时提交相同查询以更快的获取查询结果,导致资源浪费;


离线任务计算时延高,结果产出太慢:典型的如 ABTest 业务,经常计算到下午才计算出结果;


各个业务方基于自己的业务场景独立开发应用,实时任务烟囱式的开发,缺少数据分层,数据血缘。


平台建设

基于业务需求和问题,BIGO 大数据平台建设了 OneSQL OLAP 分析平台,以及实时数仓。  


通过 OneSQL OLAP 分析平台,统一 OLAP 查询入口,减少用户盲目选择,提升平台的资源利用率;

通过 Flink 构建实时数仓任务,通过 Kafka/Pulsar 进行数据分层;

将部分离线计算慢的任务迁移到 Flink 流式计算任务上,加速计算结果的产出;  


此外通过建设实时计算平台 Bigoflow 管理这些实时计算任务,建设实时任务的血缘关系。  


OneSQL OLAP 分析平台实践和优化  


OneSQL OLAP 分析平台是一个集 Flink、Spark、Presto 于一体的 OLAP 查询分析引擎。用户提交的 OLAP 查询请求通过 OneSQL 后端转发到不同执行引擎的客户端,然后提交对应的查询请求到不同的集群上执行。其整体架构图如下:

image.png

该分析平台整体结构从上到下分为入口层、转发层、执行层、资源管理层。为了优化用户体验,减少执行失败的概率,提升各集群的资源利用率,OneSQL OLAP 分析平台实现了以下功能:  


统一查询入口:入口层,用户通过统一的 Hue 查询页面入口以 Hive SQL 语法为标准提交查询;

统一查询语法:集 Flink、Spark、Presto 等多种查询引擎于一体,不同查询引擎通过适配 Hive SQL 语法来执行用户的 SQL 查询任务;

智能路由:在选择执行引擎的过程中,会根据历史 SQL 查询执行的情况 (在各引擎上是否执行成功,以及执行耗时),各集群的繁忙情况,以及各引擎对该 SQL 语法的是否兼容,来选择合适的引擎提交查询;

失败重试:OneSQL 后台会监控 SQL 任务的执行情况,如果 SQL 任务在执行过程中失败,将选择其他的引擎执行重试提交任务;  


通过 OneSQL OLAP 分析平台,BIGO 大数据平台实现了 OLAP 分析入口的统一,减少用户的盲目选择,同时充分利用各个集群的资源,减少资源空闲情况。  


《Apache Flink 案例集(2022版)》——2.数据分析——BIGO-BIGO使用Flink做OLAP分析及实时数仓的实践和优化(下)


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 Apache
Apache Hudi Savepoint实现分析
Apache Hudi Savepoint实现分析
53 0
|
1月前
|
Apache
Apache Hudi Rollback实现分析
Apache Hudi Rollback实现分析
30 0
|
22天前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之如何将Hologres字段转换为小写
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
4天前
|
消息中间件 存储 Kafka
Flink 实时数仓(二)【ODS 层开发】
Flink 实时数仓(二)【ODS 层开发】
|
4天前
|
存储 消息中间件 NoSQL
Flink 实时数仓(一)【实时数仓&离线数仓对比】(2)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
4天前
|
存储 消息中间件 Kafka
Flink 实时数仓(一)【实时数仓&离线数仓对比】(1)
Flink 实时数仓(一)【实时数仓&离线数仓对比】
|
5天前
|
SQL 分布式计算 关系型数据库
实时数仓 Hologres产品使用合集之在源表定义中,如何映射为Flink的Timestamp
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
22天前
|
关系型数据库 MySQL Java
实时计算 Flink版产品使用合集之同步MySQL数据到Hologres时,配置线程池的大小该考虑哪些
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
23天前
|
分布式计算 数据处理 MaxCompute
实时计算 Flink版产品使用合集之进行实时处理时,是否需要将所有数据导入到Hologres
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
23天前
|
NoSQL API MongoDB
实时计算 Flink版产品使用合集之断点续传的案例在哪里可以找到
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多