《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(上)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(上)

作者:刘成龙、蔡跃


用户背景

中信建投证券成立于2005年11月2日,是经中国证监会批准设立的全国性大型综合证券公司。2016年12月9日,中信建投证券在香港联交所上市,股票代码6066.HK,公司A股于2018年6月20日在上交所主板上市。公司具有行业领先、均衡全能的投资银行业务,连续8年保持行业前3名;具有产品丰富且富有竞争力的财富管理业务,公司拥有900万证券经纪业务客户,托管证券市值4.31万亿元,位居行业第2名。累计完成超过8,000单股票及债券主承销项目,主承销金额超过5万亿元,累计完成股票基金交易量超过80万亿元。凭借高度的敬业精神与突出的专业能力,中信建投证券主要经营指标目前均位居行业前10名。


业务需求


在数字化转型过程中,无论是客户、监管还是证券公司内部都对数字化建设提出了更高的要求,从个性化定制的金融产品到多方协同的实时风控能力,乃至公司内客户、业务、资金等多方面的整合管理,都需要一条稳定的、安全的实时数据链路作为重要支撑,以保证各个条线能够具有对业务需求快速反应的能力,同时对业务需求和客户状态进行实时感知并实时给出智能化、差异化、个性化的反馈,为客户提供更优质、更高效、更主动、更安全的服务。  


此外,由于金融行业涉及的业务领域众多,公司多年来积累了大量复杂的与业务高度相关的基础数据,在发现问题、分析问题,解决问题的过程中,如何协调业务前、中、后台以及科技部门等多方面配合来开展业务口径的梳理与加工逻辑的开发,成为目前亟待解决的关键问题。


image.png


中信的数据中台架构如图所示,主要分为以下几大板块:由 Greenplum 数据仓库和 Hadoop 大数据平台构成的数据中心板块;以离线开发、实时开发、数据交换为主的数据开发板块;以及数据门户、数据网关、数据治理、运营管理等板块构成。  


其中数据开发板块目前的任务主要以离线开发与数据交换的离线数据处理为主。但随着业务对数据时效性的提高,基于离线批处理的 t+1 业务模式已经无法完全满足当前市场环境下对信息及时性的需求,这也是大力发展实时开发,力求为客户提供更高时效性数据服务的原因。  


从数据门户统一入口进入实时开发模块,首先将集中交易、融资融券等业务信息的实时增量数据拉取到 Kafka 消息队列,Flink 消费 Kafka 实时流数据并与维表数据进行数据加工。加工逻辑中涉及的维表数据量比较大时,需要离线开发与数据交换,通过离线跑批的方式完成对维表的数据准备。最后将结果数据写入关系型数据库或 NoSQL 数据库。数据网关再通过读取结果数据生成 API 接口,对下游的系统提供数据服务。  


数据治理板块中的数据管控模块主要管理数据中台的数据库表以及业务相关的数据库表的元数据,用户可以在数据门户订阅他们所关注数据库表的变更信息。当订阅的数据表发生了变化的时候,运营中心可以通过统一告警模块,多渠道通知订阅用户数据库表的变更情况,以便于开发人员及时调整数据加工的任务。  


image.png


Flink 实时流处理架构首先通过 Attunity 工具采集业务数据库的 CDC 日志,将同一系统下的数据库表变化写入 Kafka 的一个 topic 队列中,这也就意味着 Kafka 的每一个 topic 中都会有多个表的数据,所以在 Flink 的 Kafka source 要先对 schema 和 tablename 这两个字段进行一次过滤,获取想要拿到的数据表的 CDC 数据流,再进行后续与维表的加工逻辑。将处理后的数据写入结果表,根据需求不同写入不同的数据库进行存储。  


证券行业数据有两个明显特征:


第一个特点是开盘的时间固定,大量业务在收盘后数据量会大幅减少,甚至有一些业务在收盘后不再产生新的数据。为了节约资源,需要根据实际情况对那些与开盘时间紧密相关的任务设置启停时间;


第二个特点是金融数据的重要性,大量场景下不允许数据偏差存在。针对数据可靠性要求极高的特征,需要对大量实时任务设置夜间数据修正的离线任务,保证数据的正确性。



《Apache Flink 案例集(2022版)》——5.数字化转型——中信建设-Apache Flink 在国有大型银行智能运营场景下的应用(下):https://developer.aliyun.com/article/1227892


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
Java 网络安全 Apache
SshClient应用指南:使用org.apache.sshd库在服务器中执行命令。
总结起来,Apache SSHD库是一个强大的工具,甚至可以用于创建你自己的SSH Server。当你需要在服务器中执行命令时,这无疑是非常有用的。希望这个指南能对你有所帮助,并祝你在使用Apache SSHD库中有一个愉快的旅程!
138 29
|
2月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
344 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
2月前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
5月前
|
存储 SQL 人工智能
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
959 13
Apache Flink 2.0:Streaming into the Future
|
8月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
6月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2506 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
6月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
289 56
|
4月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
330 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
5月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
9月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多