《Apache Flink 案例集(2022版)》——5.数字化转型——翼支付Apache Flink 在翼支付的实践应用(下)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——翼支付Apache Flink 在翼支付的实践应用(下)

《Apache Flink 案例集(2022版)》——5.数字化转型——翼支付Apache Flink 在翼支付的实践应用(上) https://developer.aliyun.com/article/1227825



生产实践

在实践过程中翼支付遇到了很多挑战,总结起来主要是业务 State 数据一致性、指标重复计算问题、动态规则配置以及全链路监控监控问题。  


首先是指标作业升级过程中,通过指标引擎配置的 job State 数据一致性问题。早期指标作业是通过手动开发,部分业务 State 存储在 HDFS 中,指标引擎配置的 job 没有单独管理业务 State 的数据,老的任务迁移到平台过程中就会遇到数据一致性问题。

 

解决思路是扩展老的计算程序,读取全量 State 数据存储到外部,然后停止老任务。指标引擎配置的作业从指定的 offset 进行数据计算,然后从外部存储补齐原有的指标数据。


image.png


上图展了作业升级的流Task open function 的时读取业务 State 数据存储到部。如是 KeyedStateState 法获取当前 task State 数据,要将 State 进行,然后获取所State 数据引擎。作业通过配置指对应的 offset通过数据的方式进行计算,从而完成数据


image.png


其次是指标作业在不断新增过程中存在的痛点,多个作业重复消费同一个 Kafka 导致上游消费压力大以及指标重复计算的问题。解决方法是对所有作业进行统一优化,对所有消息源进行统一预清洗,按照业务过程分发到对应的数据域 Topic 中。对指标进行统一的口径管理,保证指标不重复计算。目前没有对实时指标进行分层处理,主要为了避免在计算链路过长从而影响业务的时效性。


image.png


第三是Flink CEP 存在的问题。实时决策的模块是通过 Flink CEP 进行规则匹配,最初是通过程序编码的方式实现规则的匹配,然而随着规则越来越多,不便于维护,开发成本也随之增加。Flink CEP 无法进行动态的规则配置以及多个规则并行决策。针对上述问题,翼支付对 Flink CEP 进行了扩展开发来解决规则动态配置以及多个规则决策的问题。


image.png


上图展示了 Flink CEP 扩展开发的逻辑架构。用户通过 RuleManager 配置规则并将规则变更事件发布到 Zookeeper 中,RuleListener 监听到事件的变更后,若是新增规则,则会通过 groovy 动态语言编译生成 RulePattern 实例。随着规则的增多,CEP operator 线程处理效率会下降,需要通过把规则分组绑定到对应的 Worker 上来加速规则处理。CEP operator 线程接收到事件后会分发给所有 Worker,Worker 线程处理完后通过队列发布到 CEP operator 线程,最后发布到下游。


image.png


最后是数据全链路监控的问题。数据流从收集端经过 Flume 传输,再到消息中心指标计算,然后发布到下游的实时决策,不允许大量的数据丢失以及数据延迟。基于以上诉求,需要对整体数据链路进行监控,采用 prometheus + grafana 进行 metrics 的收集以及告警。这里主要针对 Flume 消息中间件进行消息堆积以及丢失的监控。Flink 指标计算主要监控运行状态以及背压情况,下游监控 CEP 决策的时间。对数据链路的监控能够帮助运维快速定位并解决线上的问题。


未来规划

未来,翼支付计划在以下几个方面进行持续探索:  


第一,数据库增量采集的方案统一。目前 MySQL 的采集是使用 Canal 实现的,未来计划使用 Flink CDC 来针对 Oracle 和 MySQL 进行统一的增量采集;


第二,离线实时的批流融合。目前离线数仓通过 Spark SQL 计算,实时数仓使用 Flink SQL 计算,维护两套元数据以及不同的指标口径使得日常工作负荷很大,未来希望使用 Flink 来完成批流一体计算;


第三,Flink 作业自动扩容缩容。目前 Flink 无法进行自动扩容缩容,早晚流量变化较大,会导致较多的资源浪费,计算能力不足的时候只能通过人工进行作业扩容。未来希望基于 Flink 来实现自动扩容,降低运维成本。


image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
25天前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
118 1
|
21天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
505 13
Apache Flink 2.0-preview released
|
25天前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
59 3
|
29天前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
Java 应用服务中间件 Apache
Apache 与tomcat实现分布式应用部署
一:原理 tomcat是一个web应用服务器,能够解析静态文件和动态文件(如:html、jsp、servlet等);apache是一个web server,能够解析静态文件。Tomcat作为一个独立的web服务器是可以使用的,但是它对静态文件的解析能力不如apache,所以就产生现在的web应用的分布式部署,apache+tomcat。 两者之间的通信通过workers配置(由tomc
2160 0
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
44 1
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
205 2
|
3月前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
46 3
|
3月前
|
消息中间件 运维 Kafka
Apache Flink 实践问题之达到网卡的最大速度如何解决
Apache Flink 实践问题之达到网卡的最大速度如何解决
44 2

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多