【linux】进程|查看进程|PID值|fork原理(下)

简介: 【linux】进程|查看进程|PID值|fork原理(下)
  • 在终端1中多次运行./pro,发现当前进程PID一直在变,而父进程的PID没变过
  • 父进程的PID为32452,在终端2中输入, ps ajx | head -1 && ps ajx |grep 32452 指令
[yzq@VM-8-8-centos lesson]$ ps ajx | head -1 && ps ajx |grep 32452
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
  907  3167  3166   907 pts/3     3166 R+    1002   0:00 grep --color=auto 32452
32451 32452 32452 32452 pts/2    32452 Ss+   1002   0:00 -bash
  • 说明父进程PID 为 -bash
  • bash为命令行解释器,本质上也是一个进程
    命令行启动的所有程序,最终都会变成进程,而该进程对应的父进程都是bash

4. 为什么都是bash?

bash怕你写的代码有问题,所以使用bash创建的子进程完成任务,这样就算是挂了,bash也没事

4.指定进程暂停

  • 在终端1中运行./pro,在终端2中输入 kill - 9+自己进程的PID
[yzq@VM-8-8-centos lesson]$ ./pro
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
我已经是一个进程了,PID为:29031,我的父进程PID为:28428
Killed
  • 在终端2中输入 kill - 9 29031,即可在终端1中显示killed,表示结束

5.如何创建子进程

创建子进程—— fork,头文件为<unistd.h> ,返回值是 pid_t类型

#include<stdio.h>
  2 #include<sys/types.h>
  3 #include<unistd.h>
  4 int main()
  5 {
  6   printf("AAAA\n");
  7   fork();
  8   printf("BBBB\n");
  9  sleep(1);                                                                                                                                                           
 10   return 0;                                                 
 11 } 
  • 继续在终端1中修改pro.c文件中的内容如上
[yzq@VM-8-8-centos lesson]$ ./pro
AAAA
BBBB
BBBB
  • 运行pro可执行程序,发现竟然执行两次BBBB
    这是为什么呢?我们继续往下看
#include<stdio.h>
  2 #include<sys/types.h>
  3 #include<unistd.h>
  4 int main()
  5 {
  6   printf("AAAA\n");
  7   fork();
  8   printf("BBBB:pid:%d,ppid:%d\n",getpid(),getppid());                                                                                                                
  9  sleep(1);                                                                                                                                                          
 10   return 0;                                                                                                                                                         
 11 }                                                                                                                                                                   
  • 修改por.c文件的内容,加上自己和父进程的PID值
[yzq@VM-8-8-centos lesson]$ ./pro
AAAA
BBBB:pid:4285,ppid:31919
BBBB:pid:4286,ppid:4285
  • 终端1中./pro运行可执行程序,两个执行B的printf语句打印自己进程的PID值不同,说明是两个进程
  • 而下面BBBB的父进程PID与上面BBBB的子进程PID相同,说明创建了子进程


1. fork返回值

  • 父进程返回子进程的PID值,子进程返回0,失败返回-1
  1 #include<stdio.h>
  2 #include<sys/types.h>
  3 #include<unistd.h>
  4 int main()
  5 {
  6   printf("AAAA\n");
  7  pid_t ret= fork();
  8   printf("BBBB:pid:%d,ppid:%d,%d,%p\n",getpid(),getppid(),ret,&ret);
  9  sleep(1);                                                 
 10   return 0;                                                
 11 } 

  • 修改pro.c文件内容,加上ret的值和地址
[yzq@VM-8-8-centos lesson]$ ./pro
AAAA
BBBB:pid:7799,ppid:31919,7800,0x7ffefc72c02c
BBBB:pid:7800,ppid:7799,0,0x7ffefc72c02c

在终端1中运行./pro,上面的BBBB,ret值返回是下面BBBB的PID值 ,说明是父进程

而下面的BBBB,ret值为0,说明是子进程

2.使父子进程执行不同的任务

#include<stdio.h>
  2 #include<sys/types.h>
  3 #include<unistd.h>
  4 int main()
  5 {
  6  pid_t ret= fork();
  7  if(ret==0)
  8  {
  9    //子进程
 10    while(1)  
 11    {
 12    printf("我是子进程,我的pid是:%d,我的父进程是:%d\n",getpid(),getppid());
 13    sleep(1);
 14    }
 15     
 16  }
 17  else if(ret>0)
 18  {
 19    //父进程
 20    while(1)
 21    {
 22    printf("我是父进程,我的pid是:%d,我的父进程是:%d\n",getpid(),getppid());
 23    sleep(1);
 24    }                                                                                                                                                                 
 25  }
 26  else
 27  {   
 //报错
 29  }         
 30   return 0;
 }

  • 修改pro.c文件的内容,设置if else语句实现
[yzq@VM-8-8-centos lesson]$ ./pro
我是父进程,我的pid是:13505,我的父进程是:31919
我是子进程,我的pid是:13506,我的父进程是:13505
我是子进程,我的pid是:13506,我的父进程是:13505
我是父进程,我的pid是:13505,我的父进程是:31919
我是子进程,我的pid是:13506,我的父进程是:13505
我是父进程,我的pid是:13505,我的父进程是:31919
我是父进程,我的pid是:13505,我的父进程是:31919
我是子进程,我的pid是:13506,我的父进程是:13505

父进程和子进程是同时运行的

说明在多执行流的环境下 if和else if可以同时成立

3. 结论

  • fork之后,执行流会变成2个
  • fork之后,谁先运行由调度器决定
  • fork之后,fork之后的代码共享,通常通过if和else if来进行执行流分流

6. fork 原理

1.fork做了什么

子进程pcb的大部分属性会以父进程pcb为模板,把父进程大部分里面的数据拷给子进程

小部分属于子进程私有的,例如PID、PPID值

因为进程等于数据结构+代码和数据,所以父进程指向自己的代码和数据,子进程也会指向同样的代码和数据

创建子进程:创建独立的pcb结构,父子进程看到的是同一份代码和数据

2.fork 如何看待代码和数据

当我们把画图关闭后,并不会影响有道云笔记的使用,说明他们都是独立存在的

进程在运行的时候,是具有独立性的

当我们在执行代码同时运行父子进程时,若使用 kill- 9 干掉父进程后,子进程仍能运行

父子进程在运行时,也是具有独立性的

父子进程指向同一块代码和数据,独立性如何保证?

代码:

代码在内存区域是只读的(从来不会自己发生变化,不会有人修改)

父子进程两者都读,不会互相影响

数据:

  1 #include<stdio.h>  
  2 #include<sys/types.h>  
  3 #include<unistd.h>  
  4 int main()  
  5 {  
  6   int x=100;  
  7  pid_t ret= fork();  
  8  if(ret==0)  
  9  {  
 10    //子进程  
 11    while(1)  
 12    {
 13    printf("我是子进程,我的pid是:%d,我的父进程是:%d,%d\n",getpid(),getppid(),x);
 14    sleep(1);
 15    }
 16     
 17  }
 18  else if(ret>0)
 19  {
 20    //父进程
 21    while(1)
 22    {
 23    printf("我是父进程,我的pid是:%d,我的父进程是:%d,%d\n",getpid(),getppid(),x);
 24    x=50;
 25    sleep(1);
 26    }
 27  }
 28   return 0;
 29 }   
  • 在终端1中修改pro.c文件的内容
[yzq@VM-8-8-centos lesson]$ ./pro
我是父进程,我的pid是:26332,我的父进程是:21231,100
我是子进程,我的pid是:26333,我的父进程是:26332,100
我是父进程,我的pid是:26332,我的父进程是:21231,50
我是子进程,我的pid是:26333,我的父进程是:26332,100
我是父进程,我的pid是:26332,我的父进程是:21231,50
我是子进程,我的pid是:26333,我的父进程是:26332,100
我是父进程,我的pid是:26332,我的父进程是:21231,50
我是子进程,我的pid是:26333,我的父进程是:26332,100


使用./pro执行可执行程序,修改父进程中的x值后,只有父进程的x值被修改,子进程x值不变

说明如果有一个进程把数据改了,并不会影响另一个进程

当有一个执行流尝试修改数据的时候,操作系统自动给当前进程触发:写时拷贝4

3.fork如何理解两个返回值问题

  • 当我们函数内部准备执行return的时候,我们的主体功能已经完成
  • fork本质上是操作系统提供的一个创建子进程的函数
  • 所以当到return时,说明创建子进程已经完成了,return语句,父进程会执行一次,子进程执行一次,共执行两次
相关文章
|
20天前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
1月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
78 34
|
15天前
|
Linux
Linux:守护进程(进程组、会话和守护进程)
守护进程在 Linux 系统中扮演着重要角色,通过后台执行关键任务和服务,确保系统的稳定运行。理解进程组和会话的概念,是正确创建和管理守护进程的基础。使用现代的 `systemd` 或传统的 `init.d` 方法,可以有效地管理守护进程,提升系统的可靠性和可维护性。希望本文能帮助读者深入理解并掌握 Linux 守护进程的相关知识。
28 7
|
14天前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
32 5
|
14天前
|
Linux 应用服务中间件 nginx
Linux 进程管理基础
Linux 进程是操作系统中运行程序的实例,彼此隔离以确保安全性和稳定性。常用命令查看和管理进程:`ps` 显示当前终端会话相关进程;`ps aux` 和 `ps -ef` 显示所有进程信息;`ps -u username` 查看特定用户进程;`ps -e | grep &lt;进程名&gt;` 查找特定进程;`ps -p &lt;PID&gt;` 查看指定 PID 的进程详情。终止进程可用 `kill &lt;PID&gt;` 或 `pkill &lt;进程名&gt;`,强制终止加 `-9` 选项。
21 3
|
1月前
|
消息中间件 Linux C++
c++ linux通过实现独立进程之间的通信和传递字符串 demo
的进程间通信机制,适用于父子进程之间的数据传输。希望本文能帮助您更好地理解和应用Linux管道,提升开发效率。 在实际开发中,除了管道,还可以根据具体需求选择消息队列、共享内存、套接字等其他进程间通信方
69 16
|
2月前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
189 20
|
2月前
|
Java Linux 调度
硬核揭秘:线程与进程的底层原理,面试高分必备!
嘿,大家好!我是小米,29岁的技术爱好者。今天来聊聊线程和进程的区别。进程是操作系统中运行的程序实例,有独立内存空间;线程是进程内的最小执行单元,共享内存。创建进程开销大但更安全,线程轻量高效但易引发数据竞争。面试时可强调:进程是资源分配单位,线程是CPU调度单位。根据不同场景选择合适的并发模型,如高并发用线程池。希望这篇文章能帮你更好地理解并回答面试中的相关问题,祝你早日拿下心仪的offer!
52 6
|
3月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
140 13
|
3月前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具