力推农业电商大数据共享开放

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

农业部、发展改革委、中央网信办、科技部、商务部、质检总局、食品药品监管总局、林业局8部门近日联合印发了《“互联网+”现代农业三年行动实施方案》。方案提出,到2018年,农业在线化、数据化取得明显进展,管理高效化和服务便捷化基本实现,生产智能化和经营网络化迈上新台阶,城乡“数字鸿沟”进一步缩小,大众创业、万众创新的良好局面基本形成,有力支撑农业现代化水平明显提升。

根据方案提出的主要任务,在生产方面,重点突出种植业、林业、畜牧业、渔业,强调农产品质量安全;在经营方面,重点推进农业电子商务;在管理方面,重点推进以大数据为核心的数据资源共享开放、支撑决策,着力点在互联网技术运用,全面提升政务信息能力和水平;在服务方面,重点强调以互联网运用推进涉农信息综合服务,加快推进信息进村入户;在农业农村方面,加强新型职业农民培育、新农村建设,大力推动网络、物流等基础设施建设。

为保障重点任务有效完成,方案还提出了农业物联网试验示范工程、农业电子商务示范工程、信息进村入户工程、农机精准作业示范工程、测土配方施肥手机服务工程、农业信息经济综合示范区等6项重大工程。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
数据采集 运维 数据挖掘
API电商接口大数据分析与数据挖掘 (商品详情店铺)
API接口、数据分析以及数据挖掘在商品详情和店铺相关的应用中,各自扮演着重要的角色。以下是关于它们各自的功能以及如何在商品详情和店铺分析中协同工作的简要说明。
|
数据采集 监控 算法
利用大数据和API优化电商决策:商品性能分析实践
在数据驱动的电子商务时代,大数据分析已成为企业提升运营效率、增强市场竞争力的关键工具。通过精确收集和分析商品性能数据,企业能够洞察市场趋势,实现库存优化,提升顾客满意度,并显著增加销售额。本文将探讨如何通过API收集商品数据,并将这些数据转化为对电商平台有价值的洞察。
|
数据采集 传感器 人工智能
大数据关键技术之电商API接口接入数据采集发展趋势
本文从数据采集场景、数据采集系统、数据采集技术方面阐述数据采集的发展趋势。 01 数据采集场景的发展趋势 作为大数据和人工智能工程的源头,数据采集的场景伴随着应用场景的发展而变化,以下是数据采集场景的发展趋势。
|
1月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
1月前
|
机器学习/深度学习 人工智能 供应链
别再靠拍脑袋进货了!用大数据让电商库存“自己会算”
别再靠拍脑袋进货了!用大数据让电商库存“自己会算”
179 10
|
2月前
|
SQL 缓存 分布式计算
【跨国数仓迁移最佳实践5】MaxCompute近线查询解决方案助力物流电商等实时场景实现高效查询
本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第5篇,解析跨国数仓迁移背后的性能优化技术。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
169 8
|
2月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
142 14
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
3月前
|
机器学习/深度学习 数据采集 Java
Java 大视界 --Java 大数据在智慧农业农产品市场价格预测与种植决策支持中的应用(212)
本篇文章探讨了 Java 大数据在智慧农业中的关键应用,聚焦农产品市场价格预测与种植决策支持。通过多源数据采集、机器学习模型构建及动态预测预警,Java 大数据助力农户科学决策,提升收益并降低风险。结合山东寿光与黑龙江北大荒的实践案例,展示了技术在实际农业中的显著成效。
|
4月前
|
传感器 机器学习/深度学习 算法
Java 大视界 -- Java 大数据在智能农业温室环境调控与作物生长模型构建中的应用(189)
本文探讨了Java大数据在智能农业温室环境调控与作物生长模型构建中的关键应用。通过高效采集、传输与处理温室环境数据,结合机器学习算法,实现温度、湿度、光照等参数的智能调控,提升作物产量与品质。同时,融合多源数据构建精准作物生长模型,助力农业智能化、精细化发展,推动农业现代化进程。

热门文章

最新文章