「数据仓库技术」怎么选择现代数据仓库

简介: 「数据仓库技术」怎么选择现代数据仓库

构建自己的数据仓库时要考虑的基本因素


我们用过很多数据仓库。当我们的客户问我们,对于他们成长中的公司来说,最好的数据仓库是什么时,我们会根据他们的具体需求来考虑答案。通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。

大多数现代数据仓库解决方案都设计为使用原始数据。它允许动态地重新转换数据,而不需要重新摄取存储在仓库中的数据。

在这篇文章中,我们将深入探讨在选择数据仓库时需要考虑的因素。在这里,他们是:

  • 数据量
  • 专门负责人力资源的支持和维护
  • 可伸缩性:水平与垂直
  • 定价模型

数据量

您需要知道将要处理的数据量的估计。如果您使用的数据集的范围是数百tb或pb,那么强烈建议使用非关系数据库。这类数据库的架构支持与庞大的数据集的工作是根深蒂固的。

另一方面,许多关系数据库都有非常棒的经过时间验证的查询优化器。只要您的数据集适合于单个节点,您就可以将它们视为分析仓库的选项。

让我们看看一些与数据集大小相关的数学:

将tb级的数据从Postgres加载到BigQuery

  • Postgres、MySQL、MSSQL和许多其他RDBMS的最佳点是在分析中涉及到高达1TB的数据。如果超过此大小,则可能会导致性能下降。
  • Amazon Redshift、谷歌BigQuery、SnowflPBake和基于hadoop的解决方案以最优方式支持最多可达多个PB的数据集。

本地和云

要评估的另一个重要方面是,是否有专门用于数据库维护、支持和修复的资源(如果有的话)。这一方面在比较中起着重要的作用。

如果您有专门的资源用于支持和维护,那么在选择数据库时您就有了更多的选择。

您可以选择基于Hadoop或Greenplum之类的东西创建自己的大数据仓库选项。这些系统确实需要大量的安装、维护工程资源和熟练的人员。

但是,如果您没有任何用于维护的专用资源,那么您的选择就会受到一些限制。我们建议使用现代的数据仓库解决方案,如Redshift、BigQuery或Snowflake。作为管理员或用户,您不需要担心部署、托管、调整vm大小、处理复制或加密。您可以通过发出SQL命令开始使用它。

可伸缩性

当您开始使用数据库时,您希望它具有足够的可伸缩性来支持您的进一步发展。广义上说,数据库可伸缩性可以通过两种方式实现,水平的或垂直的。

水平可伸缩性指的是增加更多的机器,而垂直可伸缩性指的是向单个节点添加资源以提高其性能。

Redshift提供了简单的可伸缩选项。只需单击几下鼠标,就可以增加节点的数量并配置它们以满足您的需要。在一次查询中同时处理大约100TB的数据之前,Redshift的规模非常大。Redshift集群的计算能力将始终依赖于集群中的节点数,这与其他一些数据仓库选项不同。

这就是BigQuery这样的解决方案发挥作用的地方。实际上没有集群容量,因为BigQuery最多可以分配2000个插槽,这相当于Redshift中的节点。另外,由于这种多租户策略,即使当客户的并发性需求增长时,BigQuery也可以与这些需求无缝伸缩,如果需要,可以超过2000个插槽的限制。

BigQuery依赖于谷歌最新一代分布式文件系统Colossus。Colossus允许BigQuery用户无缝地扩展到几十PB的存储空间,而无需支付附加昂贵计算资源的代价。

ETL vs ELT:考虑到数据仓库的发展

Snowflake构建在Amazon S3云存储上,它的存储层保存所有不同的数据、表和查询结果。因为这个存储层被设计成完全独立于计算资源的可伸缩性,它确保了可以毫不费力地为大数据仓库和分析实现最大的可伸缩性。

除此之外,Snowflake还提供了几乎任何规模和并发性的多个虚拟仓库,可以同时对相同的数据进行操作,同时完全强制执行全局系统范围的事务完整性,并保持其可伸缩性。

定价

如果您使用像Hadoop这样的自托管选项,那么您的定价将主要由VM或硬件账单组成。AWS提供了一种EMR解决方案,在使用Hadoop时可以考虑这种方案。

再深入研究Redshift、BigQuery和Snowflake,他们都提供按需定价,但每个都有自己独特的定价模式。

亚马逊红移提供三种定价模式:

  • 按需定价:无需预先承诺和成本,只需根据集群中节点的类型和数量按小时付费。这里,一个经常被忽略的重要因素是,税率确实因地区而异。这些速率包括计算和数据存储。
  • 频谱定价:您只需为查询Amazon S3时扫描的字节付费。
  • 保留实例定价:如果您确信您将在Redshift上运行至少几年,那么通过选择保留实例定价,您可以比按需定价节省75%。

谷歌BigQuery提供可伸缩、灵活的定价选项,并对数据存储、流插入和查询数据收费,但加载和导出数据是免费的。BigQuery的定价策略非常独特,因为它基于每GB存储速率和查询字节扫描速率。此外,它提供了成本控制机制,使您能够限制您的每日成本数额,您选择。它还提供了一个长期定价模式。

Snowflake提供按需定价,类似于BigQuery和Redshift Spectrum。与BigQuery不同的是,计算使用量是按秒计费的,而不是按扫描字节计费的,至少需要60秒。Snowflake将数据存储与计算解耦,因此两者的计费都是单独的。

标准版的存储价格从40美元/TB/月开始,其他版本的存储价格也一样。另一方面,对于计算来说,标准版的价格为每小时2.00美元,企业版为每小时4.00美元。

结论

我们通常向客户提供的关于选择数据仓库的一般建议如下:

  • 当数据总量远小于1TB,每个分析表的行数远小于500M,并且整个数据库可以容纳到一个节点时,使用索引优化的RDBMS(如Postgres、MySQL或MSSQL)。
  • 当数据量在1TB到100TB之间时,使用现代数据仓库,如Redshift、BigQuery或Snowflake。也可以考虑使用Hadoop和Hive、Spark SQL或Impala作为解决方案,如果你有相关的专业知识,你可以分配专门的人力资源来支持它。
  • 当数据量超过100TB时,使用BigQuery、Snowflake、Redshift Spectrum或自托管的Hadoop等效解决方案。


相关文章
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
581 0
|
8月前
|
SQL 存储 分布式计算
【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)
【大数据技术Hadoop+Spark】Hive数据仓库架构、优缺点、数据模型介绍(图文解释 超详细)
1188 0
|
4月前
|
机器学习/深度学习 消息中间件 搜索推荐
【数据飞轮】驱动业务增长的高效引擎 —从数据仓库到数据中台的技术进化与实战
在数据驱动时代,企业逐渐从数据仓库过渡到数据中台,并进一步发展为数据飞轮。本文详细介绍了这一演进路径,涵盖数据仓库的基础存储与查询、数据中台的集成与实时决策,以及数据飞轮的自动化增长机制。通过代码示例展示如何在实际业务中运用数据技术,实现数据的最大价值,推动业务持续优化与增长。
156 4
|
3月前
|
存储 数据管理 大数据
从数据仓库到数据中台再到数据飞轮:社交媒体的数据技术进化史
从数据仓库到数据中台再到数据飞轮:社交媒体的数据技术进化史
|
5月前
|
存储 监控 数据挖掘
【计算机三级数据库技术】第14章 数据仓库与数据挖掘-
文章概述了数据仓库和数据挖掘技术的基本概念、决策支持系统的发展、数据仓库的设计与建造、运行与维护,以及联机分析处理(OLAP)与多维数据模型和数据挖掘技术的步骤及常见任务。
54 3
|
6月前
|
机器学习/深度学习 分布式计算 数据挖掘
数据仓库与数据挖掘技术的结合应用
【7月更文挑战第30天】数据仓库与数据挖掘技术的结合应用是现代企业实现高效决策和精准分析的重要手段。通过整合高质量的数据资源,利用先进的数据挖掘技术,企业可以更好地理解市场、客户和业务,从而制定科学的决策和战略。未来,随着技术的不断进步和应用场景的不断拓展,数据仓库与数据挖掘技术的结合应用将会为企业的发展提供更多机遇和挑战。
|
canal 缓存 otter
数据仓库 、数据中心相关技术知识和生态相关了解
数据仓库 、数据中心相关技术知识和生态相关了解
227 0
|
存储 分布式计算 关系型数据库
|
8月前
|
存储 大数据 数据管理
数据仓库(08)数仓事实表和维度表技术
所谓的事实表和维度表技术,指的就是如何和构造一张事实表和维度表,是的事实表和维度表,可以涵盖现在目前的需要和方便后续下游数据应用的开发
179 1
|
存储 分布式计算 关系型数据库
云原生数据仓库AnalyticDB MySQL湖仓版架构升级,持续释放技术红利!
云原生数据仓库AnalyticDB MySQL湖仓版架降价23%!持续提供高性价比的产品服务

热门文章

最新文章