即插即用 | 英伟达提出FAN,鲁棒性和高效性超越ConvNeXt、Swin(二)

简介: 即插即用 | 英伟达提出FAN,鲁棒性和高效性超越ConvNeXt、Swin(二)

3实验


3.1 消融实验

image.png

如表7所示,原始的ConvNeXt比Swin-Transformer具有更强的鲁棒性,但不如FAN-ViT和FAN-Swin模型。同时,FAN-hybrid具有与FAN-vit和FAN-swin相当的鲁棒性,并且对于干净数据集和已损坏数据集都具有更高的精度,这意味着FAN也可以有效地增强基于CNN的模型的鲁棒性。与FAN-Swin类似,FAN-Hybrid对于大分辨率的输入和密集的预测任务具有高效性,有利于下游任务。

3.2 SOTA对比

image.png


4参考


[1].Understanding The Robustness in Vision Transformers.


5推荐阅读


NAS-ViT | 超低FLOPs与Params实现50FPS的CPU推理,精度却超越ResNet50!!!

PolyLoss | 统一CE Loss与Focal Loss,PolyLoss用1行代码+1个超参完成超车!!!

超越 Swin、ConvNeXt | Facebook提出Neighborhood Attention Transformer

相关文章
|
7月前
|
机器学习/深度学习 算法 网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
|
5月前
|
机器学习/深度学习 自然语言处理 算法
一文看懂Mamba,Transformer最强竞争者
【9月更文挑战第12天】Mamba是一种创新的深度学习架构,旨在解决Transformer处理长序列时计算成本高昂的问题。通过借鉴状态空间模型,Mamba实现了近线性的可扩展性,同时保持了强大的建模能力。其核心在于动态调整状态演化的选择机制,有效过滤无关信息。Mamba还引入了硬件感知计算算法,进一步提升计算效率。已在自然语言处理、计算机视觉等多个领域取得卓越成果,展现出广阔的应用前景。然而,其复杂的选择机制和训练优化仍需克服。论文详情参见:[链接](https://arxiv.org/pdf/2408.01129)。
156 1
|
9月前
|
机器学习/深度学习 算法 计算机视觉
【CVPR轻量级网络】- 追求更高的FLOPS(FasterNet)
【CVPR轻量级网络】- 追求更高的FLOPS(FasterNet)
393 2
|
9月前
|
机器学习/深度学习 编解码 数据可视化
即插即用 | 高效多尺度注意力模型成为YOLOv5改进的小帮手
即插即用 | 高效多尺度注意力模型成为YOLOv5改进的小帮手
472 1
|
9月前
|
机器学习/深度学习 编解码 数据可视化
南开大学提出YOLO-MS | 超越YOLOv8与RTMDet,即插即用打破性能瓶颈
南开大学提出YOLO-MS | 超越YOLOv8与RTMDet,即插即用打破性能瓶颈
135 1
|
9月前
|
机器学习/深度学习 编解码 测试技术
超强Trick | 如何设计一个比Transformer更强的CNN Backbone
超强Trick | 如何设计一个比Transformer更强的CNN Backbone
101 0
|
编解码 测试技术 计算机视觉
LVT | ViT轻量化的曙光,完美超越MobileNet和ResNet系列(二)
LVT | ViT轻量化的曙光,完美超越MobileNet和ResNet系列(二)
269 0
LVT | ViT轻量化的曙光,完美超越MobileNet和ResNet系列(二)
|
机器学习/深度学习 图形学 网络架构
ICLR 2022 | 纯MLP的点云网络:新架构PointMLP大幅提高点云分类准确率和推理速度
ICLR 2022 | 纯MLP的点云网络:新架构PointMLP大幅提高点云分类准确率和推理速度
756 0
ICLR 2022 | 纯MLP的点云网络:新架构PointMLP大幅提高点云分类准确率和推理速度
|
机器学习/深度学习 存储 数据可视化
即插即用 | 英伟达提出FAN,鲁棒性和高效性超越ConvNeXt、Swin(一)
即插即用 | 英伟达提出FAN,鲁棒性和高效性超越ConvNeXt、Swin(一)
104 0
|
机器学习/深度学习 编解码 计算机视觉
三星提出XFormer | 超越MobileViT、DeiT、MobileNet等模型
三星提出XFormer | 超越MobileViT、DeiT、MobileNet等模型
462 0