斯坦福70亿参数开源模型媲美GPT-3.5,100美元即可复现

简介: 斯坦福70亿参数开源模型媲美GPT-3.5,100美元即可复现


机器之心编辑部

学界或许没有业界的算力优势,但可以使用 self-instruct 方法直面大规模语言模型的挑战。


随着大规模语言模型的日渐强大,人们对 AI 模型提出了伦理道德方面的更高要求。业界在模型规模扩展方面具有算力资源优势,但要想让模型更规范、可靠,需要学术界的努力。


近日,斯坦福基于 Meta 的 LLaMA 7B 模型微调出一个新模型 Alpaca。该研究让 OpenAI 的 text-davinci-003 模型以 self-instruct 方式生成 52K 指令遵循(instruction-following)样本,以此作为 Alpaca 的训练数据。研究团队已将训练数据、生成训练数据的代码和超参数开源,后续还将发布模型权重和训练代码。




实验结果表明,Alpaca 的很多行为都与 text-davinci-003 类似。也就是说,只有 7B 参数的轻量级模型 Alpaca 性能可媲美 GPT-3.5 这样的超大规模语言模型。


我们来看一下 Alpaca 模型是如何做到的。


训练方法


在学术界的预算条件下,训练高质量的指令遵循模型面临两个重要挑战:强大的预训练语言模型和高质量的指令遵循数据。


Meta 最近发布的 LLaMA 系列模型解决了第一个挑战。对于第二个挑战,2022 年底的 self-instruct 论文提出使用现有的强大语言模型自动生成指令数据。


论文地址:https://arxiv.org/abs/2212.10560


按照这种方法,Alpaca 使用 LLaMA 7B 模型的监督学习在 text-davinci-003 以 self-instruct 方式生成的 52K 指令遵循样本上进行微调。


self-instruct 方法概览。


Alpaca 的研究团队首先使用 self-instruct 种子集中的 175 个人工编写的指令输出(instruction-output)对,然后用该种子集作为 in-context 样本 prompt text-davinci-003 来生成更多指令。该研究通过简化生成 pipeline 改进了 self-instruct 方法,并显著降低了成本。



该研究共生成了 52K 个不同的指令和相应的输出作为训练数据,其中使用了 OpenAI 开放的 API,成本不到 500 美元。由于研究团队已将训练数据开源,对于想要复现 Alpaca 的开发者来说,这500美元就省下了。



有了这个指令遵循数据集,该研究下一步使用 Hugging Face 的训练框架微调了 LLaMA 模型,并利用了 FSDP(Fully Sharded Data Parallel)和混合精度训练等技术。成本方面,在 8 个 80GB A100 上微调一个 7B LLaMA 模型需要 3 个小时,这对大多数云计算提供商来说成本不到 100 美元。


模型评估


该研究使用来自 self-instruct 评估集的输入进行了人工评估,这项工作由 5 名研究团队的学生完成。该评估集由 self-instruct 论文的作者收集整理,涵盖了多种面向用户的 instruction,涉及电子邮件、社交媒体和办公工具。


在将 text-davinci-003 和 Alpaca 7B 进行 blind pairwise 比较之后,研究者发现这两个模型的性能非常相似,并且 Alpaca 略优于 text-davinci-003。


从参数规模的角度看,Alpaca 远远小于 text-davinci-003,移动端甚至也可以运行 7B 的轻量级语言模型。这让 Alpaca 意义非凡。


除了利用上述静态的 self-instruct 评估集,该研究还对 Alpaca 模型进行了交互测试,并发现 Alpaca 的表现通常与 text-davinci-003 相似。


下面是研究团队测试的两个例子,结果表明 Alpaca 的输出良好,并且反映出指令遵循数据集的一般风格。例如,Alpaca 输出的答案通常比 ChatGPT 更简洁,这和 text-davinci-003 类似。



模型缺陷


实验中,Alpaca 还表现出语言模型的几种常见缺陷,包括幻觉、毒性和刻板印象,其中幻觉问题尤其严重。


例如在下图中,Alpaca 回答坦桑尼亚的首都是达累斯萨拉姆,但实际上应该是多多马。



此外,Alpaca 能够生成一些看似良好却包含错误或虚假信息的文本,这可能会误导人们。


Alpaca 可能包含许多与底层语言模型和指令调优数据相关的其他缺陷。但是,Alpaca 对机器学习社区仍然具有重要意义,因为它提供了一个相对轻量级的模型,可作为研究重要缺陷的基础。斯坦福的研究团队还强调:Alpaca 只可用于学术研究,禁止任何商业用途。


接下来,斯坦福的研究团队会进一步探究 Alpaca 模型的安全性、理解能力、规模扩展等等。研究团队希望 Alpaca 能够促进指令遵循模型的发展。


原文链接:

https://crfm.stanford.edu/2023/03/13/alpaca.html

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
126 2
|
2月前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
78 4
|
3月前
|
API 云栖大会
通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o
通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o
1140 11
|
2月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
165 60
|
2月前
|
人工智能 编解码 文字识别
阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!
阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。
|
2月前
|
人工智能
用AI人模拟社会学实验,居然成功了?斯坦福、NYU用GPT-4模仿人类,准确度惊人!
斯坦福大学和纽约大学的研究团队利用GPT-4模型成功模拟了人类在社交互动中的行为模式,实验结果显示AI能以惊人准确度模仿人类对话,甚至在在线论坛和社交媒体上与真人难以区分。这一突破不仅展示了AI在社会学研究中的巨大潜力,还引发了对AI伦理和透明度的深入探讨。尽管存在一些局限性和挑战,这项研究为未来社会学实验提供了新工具和方法。[论文地址:https://docsend.com/view/qeeccuggec56k9hd]
63 2
|
2月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
48 0
|
2月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
65 0
|
5月前
|
存储 SQL 数据库
Python 金融编程第二版(GPT 重译)(四)(4)
Python 金融编程第二版(GPT 重译)(四)
50 3
|
5月前
|
存储 NoSQL 索引
Python 金融编程第二版(GPT 重译)(一)(4)
Python 金融编程第二版(GPT 重译)(一)
63 2

热门文章

最新文章