清华朱军团队开源首个基于Transformer的多模态扩散大模型,文图互生、改写全拿下(1)

简介: 清华朱军团队开源首个基于Transformer的多模态扩散大模型,文图互生、改写全拿下


该论文提出了一个为多 模态设计的概率建模框架 UniDiffuser,除了单向的文生图,还能实现图生文、图文联合生成、无条件图文生成、图文改写等多种功能。

据悉 GPT-4 将于本周发布,多模态将成为其一大亮点。当前的大语言模型正在成为理解各种模态的通用接口,能够根据不同模态信息来给出回复文本,但大语言模型生成的内容也仅仅局限于文本。另一方面,当前的扩散模型 DALL・E 2、Imagen、Stable Diffusion 等在视觉创作上掀起一场革命,但这些模型仅仅支持文到图的单一跨模态功能,离通用式生成模型还有一定距离。而多模态大模型将能够打通各种模态能力,实现任意模态之间转化,被认为是通用式生成模型的未来发展方向。


清华大学计算机系朱军教授带领的 TSAIL 团队近期公开的一篇论文《One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale》,率先发布了对多模态生成式模型的一些探索工作,实现了任意模态之间的相互转化。



论文链接:https://ml.cs.tsinghua.edu.cn/diffusion/unidiffuser.pdf

开源代码:https://github.com/thu-ml/unidiffuser


该论文提出了一个为多模态设计的概率建模框架 UniDiffuser,并采用该团队提出的基于 transformer 的网络架构 U-ViT,在开源的大规模图文数据集 LAION-5B 上训练了一个十亿参数量的模型,使得一个底层模型能够高质量地完成多种生成任务(图 1)。简单来讲,除了单向的文生图,还能实现图生文、图文联合生成、无条件图文生成、图文改写等多种功能,大幅提升文图内容的生产效率,也进一步提升了生成式模型的应用想象力。


该论文一作鲍凡目前博士在读,是此前 Analytic-DPM 的提出者,凭借在扩散模型方面的优秀工作荣获 ICLR 2022 的 outstanding paper award(目前唯一一篇大陆单位独立完成的获奖论文)。


此外,机器之心之前还报道过 TSAIL 团队提出的 DPM-Solver 快速算法,目前仍是扩散模型最快的生成算法。多模态大模型正是该团队在深度概率模型的算法和原理方面上长期深入积累的一个集中展示。该工作的合作者包括人民大学高瓴人工智能学院的李崇轩、北京智源研究院的曹越等。



值得注意的是,该项目的论文和代码均已开源。


效果展示


如下的图 8 展示了 UniDiffuser 在图文联合生成的效果:



如下的图 9 展示了 UniDiffuser 在文到图上的效果:



如下的图 10 展示了 UniDiffuser 在图到文上的效果:



如下的图 11 展示了 UniDiffuser 在无条件图像生成上的效果:


如下的图 12 展示了 UniDiffuser 在图像改写上的效果:



如下的图 15 展示了 UniDiffuser 能够实现在图文两个模态之间的来回跳跃 :


如下图 16 展示了 UniDiffuser 能对真实的两张图像进行插值:


方法概览


研究团队将针对通用生成式模型的设计划分成了两个子问题:


  • 概率建模框架:是否能寻找到一个概率建模框架,能同时建模出模态之间所有的分布,例如图文之间的边缘分布、条件分布、联合分布等?
  • 网络架构:是否能设计出一个统一的网络架构,来支持各种不同模态的输入?


概率建模框架


针对概率建模框架,研究团队提出 UniDiffuser,一个基于扩散模型的概率建模框架。UniDiffuser 能够显示地建模多模态数据中包括边缘分布、条件分布、联合分布在内的所有分布。研究团队发现,关于不同分布的扩散模型学习都可以统一成一个视角:首先向两个模态的数据分别加入某种大小的噪声,然后再预测两个模态数据上的噪声。其中两个模态数据上的噪声大小决定了具体的分布。例如,将文本的噪声大小设置为 0,则对应了文生图的条件分布;将文本噪声大小设置为最大值,则对应了无条件图像生成的分布;将图文噪声大小设置为相同,则对应了图文的联合分布。根据该统一的视角,UniDiffuser 只需要将原始扩散模型的训练算法做少许的修改,便能同时学习上述的所有分布 — 如下图所示,UniDiffuser 同时向所有模态加噪而非单个模态,输入所有模态对应的噪声大小,以及预测所有模态上的噪声。


以双模态为例子,最终的训练目标函数如下所示:


其中代表数据,代表加入到两个模态中的标准高斯噪声,代表两个模态加入噪声的大小(即时间),两者独立的从 {1,2,…,T} 中采样,为噪声预测网络,同时预测两个模态上的噪声。


在训练后,通过向噪声预测网络设置两个模态合适的时间,UniDiffuser 能够实现无条件、条件以及联合生成。例如将文本的时间设置为 0,可以实现文到图生成;将文本的时间设置为最大值,可以实现无条件图像生成;将图文时间设置为相同值,可以实现图文联合生成。


下面罗列了 UniDiffuser 的训练和采样算法,可见这些算法相对原始的扩散模型均只做了微小的改动,易于实现。


此外,由于 UniDiffuser 同时建模了条件分布和无条件分布,因此 UniDiffuser 天然地支持 classifier-free guidance。下面的图 3 展示了 UniDiffuser 的条件生成和联合生成在不同的 guidance scale 下的效果:


网络架构


针对网络架构,研究团队提出使用基于 transformer 的架构来参数化噪声预测网络。具体地,研究团队采用了最近提出的 U-ViT 架构。U-ViT 将所有的输入都视作 token,并在 transformer 块之间加入了 U 型连接。研究团队也采用了 Stable Diffusion 的策略,将不同模态的数据都转换到了隐空间再进行扩散模型的建模。值得注意的是,U-ViT 架构同样来自该研究团队,并且已被开源在 https://github.com/baofff/U-ViT



相关文章
清华朱军团队开源首个基于Transformer的多模态扩散大模型,文图互生、改写全拿下(2)
清华朱军团队开源首个基于Transformer的多模态扩散大模型,文图互生、改写全拿下
239 0
|
3月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
258 14
|
3月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
790 2
|
2月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
187 2
|
3月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
110 2
|
3月前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
59 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
2月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
91 2
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
140 3
【机器学习】大模型驱动下的医疗诊断应用
|
2月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
340 1

热门文章

最新文章