10行代码搞定图Transformer,图神经网络框架DGL迎来1.0版本

简介: 10行代码搞定图Transformer,图神经网络框架DGL迎来1.0版本


让所有人都能快速使用图机器学习。


2019 年,纽约大学、亚马逊云科技联手推出图神经网络框架 DGL (Deep Graph Library)。如今 DGL 1.0 正式发布!DGL 1.0 总结了过去三年学术界或工业界对图深度学习和图神经网络(GNN)技术的各类需求。从最先进模型的学术研究到将 GNN 扩展到工业级应用,DGL 1.0 为所有用户提供全面且易用的解决方案,以更好的利用图机器学习的优势。


DGL 1.0 为不同场景提供的解决方案。

DGL 1.0 采用分层和模块化的设计,以满足各种用户需求。本次发布的关键特性包括:


  • 100 多个开箱即用的 GNN 模型示例,15 多个在 Open Graph Benchmark(OGB)上排名靠前的基准模型;
  • 150 多个 GNN 常用模块,包括 GNN 层、数据集、图数据转换模块、图采样器等,可用于构建新的模型架构或基于 GNN 的解决方案;
  • 灵活高效的消息传递和稀疏矩阵抽象,用于开发新的 GNN 模块;
  • 多 GPU 和分布式训练能力,支持在百亿规模的图上进行训练。


DGL 1.0 技术栈图

地址:https://github.com/dmlc/dgl


此版本的亮点之一是引入了 DGL-Sparse,这是一个全新的编程接口,使用了稀疏矩阵作为核心的编程抽象。DGL-Sparse 不仅可以简化现有的 GNN 模型(例如图卷积网络)的开发,而且还适用于最新的模型,包括基于扩散的 GNN,超图神经网络和图 Transformer。


DGL 1.0 版本的发布在外网引起了热烈反响,深度学习三巨头之一 Yann Lecun、新加坡国立大学副教授 Xavier Bresson 等学者都点赞并转发。


在接下来的文章中,作者概述了两种主流的 GNN 范式,即消息传递视图和矩阵视图。这些范式可以帮助研究人员更好地理解 GNN 的内部工作机制,而矩阵视角也是 DGL Sparse 开发的动机之一。


消息传递视图和矩阵视图


电影《降临》中有这么一句话:「你所使用的语言决定了你的思维方式,并影响了你对事物的看法。」这句话也适合 GNN。


表示图神经网络有两种不同的范式。第一种称为消息传递视图,从细粒度、局部的角度表达 GNN 模型,详细描述如何沿边交换消息以及节点状态如何进行相应的更新。第二种是矩阵视角,由于图与稀疏邻接矩阵具有代数等价性,许多研究人员选择从粗粒度、全局的角度来表达 GNN 模型,强调涉及稀疏邻接矩阵和特征向量的操作。


消息传递视角揭示了 GNN 与 Weisfeiler Lehman (WL)图同构测试之间的联系,后者也依赖于从邻居聚合信息。而矩阵视角则从代数角度来理解 GNN,引发了一些有趣的发现,比如过度平滑问题。


总之,这两种视角都是研究 GNN 不可或缺的工具,它们互相补充,帮助研究人员更好地理解和描述 GNN 模型的本质和特性。正是基于这个原因,DGL 1.0 发布的主要动机之一就是在已有的消息传递接口基础之上,增加对于矩阵视角的支持。


DGL Sparse:为图机器学习设计的稀疏矩阵库


DGL 1.0 版本中新增了一个名为 DGL Sparse 的库(dgl.sparse),它和 DGL 中的消息传递接口一起,完善了对于全类型的图神经网络模型的支持。DGL Sparse 提供专门用于 图机器学习的稀疏矩阵类和操作,使得在矩阵视角下编写 GNN 变得更加容易。在下一节中,作者演示多个 GNN 示例,展示它们在 DGL Sparse 中的数学公式和相应的代码实现。


图卷积网络(Graph Convolutional Network


GCN 是 GNN 建模的先驱之一。GCN 可以同时用消息传递视图和矩阵视图来表示。下面的代码比较了 DGL 中用这两种方法实现的区别。


使用消息传递 API 实现 GCN

使用 DGL Sparse 实现 GCN

基于图扩散的 GNN


图扩散是沿边传播或平滑节点特征或信号的过程。PageRank 等许多经典图算法都属于这一类。一系列研究表明,将图扩散与神经网络相结合是增强模型预测有效且高效的方法。下面的等式描述了其中比较有代表性的模型 APPNP 的核心计算。它可以直接在 DGL Sparse 中实现。


超图神经网络


超图是图的推广,其中边可以连接任意数量的节点(称为超边)。超图在需要捕获高阶关系的场景中特别有用,例如电子商务平台中的共同购买行为,或引文网络中的共同作者等。超图的典型特征是其稀疏的关联矩阵,因此超图神经网络 (HGNN) 通常使用稀疏矩阵定义。以下是超图卷积网络(Feng et al., 2018)和其代码实现。


图 Transformer


Transformer 模型已经成为自然语言处理中最成功的模型架构。研究人员也开始将 Transformer 扩展到图机器学习。Dwivedi 等人开创性地提出将所有多头注意力限制为图中连接的节点对。通过 DGL Sparse 工具,只需 10 行代码即可轻松实现该模型。


DGL Sparse 的关键特性


相比 scipy.sparse 或 torch.sparse 等稀疏矩阵库,DGL Sparse 的整体设计是为图机器学习服务,其中包括了以下关键特性:


  • 自动稀疏格式选择:DGL Sparse 的设计让用户不必为了选择正确的数据结构存储稀疏矩阵(也称为稀疏格式)而烦恼。用户只需要记住 dgl.sparse.spmatrix 创建稀疏矩阵,而 DGL 在内部则会根据调用的算子来自动选择最优格式;
  • 标量或矢量非零元素:很多 GNN 模型会在边上学习多个权重(如 Graph Transformer 示例中演示的多头注意力向量)。为了适应这种情况,DGL Sparse 允许非零元素具有向量形状,并扩展了常见的稀疏操作,例如稀疏 - 稠密 - 矩阵乘法(SpMM)等。可以参考 Graph Transformer 示例中的 bspmm 操作。


通过利用这些设计特性,与之前使用消息传递接口的矩阵视图模型的实现相比,DGL Sparse 将代码长度平均降低了 2.7 倍。简化的代码还使框架的开销减少 43%。此外DGL Sparse 与 PyTorch 兼容,可以轻松与 PyTorch 生态系统中的各种工具和包集成。


开始使用 DGL 1.0


DGL 1.0 已经在全平台发布,并可以使用 pip 或 conda 轻松安装。除了前面介绍的示例之外,DGL Sparse 的第一个版本还包括 5 个教程和 11 个端到端示例,所有教程都可以在 Google Colab 中直接体验,无需本地安装。


想了解更多关于 DGL 1.0 的新功能,请参阅作者的发布日志。如果您在使用 DGL 的过程中遇到任何问题或者有任何建议和反馈,也可以通过 Discuss 论坛或者 Slack 联系到 DGL 团队。


原文链接:https://www.dgl.ai/release/2023/02/20/release.html

相关文章
|
3天前
|
编解码 分布式计算 网络协议
Netty高性能网络框架(一)
Netty高性能网络框架(一)
|
29天前
|
存储 算法 Java
Java中的集合框架深度解析云上守护:云计算与网络安全的协同进化
【8月更文挑战第29天】在Java的世界中,集合框架是数据结构的代言人。它不仅让数据存储变得优雅而高效,还为程序员提供了一套丰富的工具箱。本文将带你深入理解集合框架的设计哲学,探索其背后的原理,并分享一些实用的使用技巧。无论你是初学者还是资深开发者,这篇文章都将为你打开一扇通往高效编程的大门。
|
1月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
136 6
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
59 1
|
27天前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
40 0
|
1月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
37 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
79 2
|
1月前
|
Java 应用服务中间件 Linux
(九)Java网络编程无冕之王-这回把大名鼎鼎的Netty框架一网打尽!
现如今的开发环境中,分布式/微服务架构大行其道,而分布式/微服务的根基在于网络编程,而Netty恰恰是Java网络编程领域的无冕之王。Netty这个框架相信大家定然听说过,其在Java网络编程中的地位,好比JavaEE中的Spring。
|
1月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
38 0

热门文章

最新文章