python爬取数据中的headers和代理IP问题

简介: python爬取数据中的headers和代理IP问题

爬虫的主要爬取方式之一是聚焦爬虫,也就是说,爬取某一个特定网站或者具有特定内容的网站,而一般比较大的有价值的网站都会有反爬策略,其中常见的反爬策略是网站根据来访者的身份判定是否予以放行。
对来访者身份的判定一般基于headers里的user-Agent值,每一种浏览器访问网站的user-Agent都是不同的,因此,爬虫需要伪装成浏览器,并且在爬取的过程中自动切换伪装,从而防止网站的封杀。可以通过一些爬虫库调用随机返回一个headers(User-Agent)
`from fake_useragent import UserAgent # 下载:pip install fake-useragent
import requests

ua = UserAgent() # 实例化,需要联网但是网站不太稳定-可能耗时会长一些
print(ua.random) # 随机产生
headers = {
'User-Agent': ua.random # 伪装
}

请求

if name == 'main':
url = 'https://www.baidu.com/'
response = requests.get(url, headers=headers ,proxies={"http":"117.136.27.43"})
print(response.status_code)

还有就是访问IP的判别,在进行Python爬虫程序开发时,如果频繁地访问同一网站的情况下,网站服务器可能会把该IP地址列入黑名单,限制其访问权限。此时,使用IP代理技术可以有效避免这种限制,保证爬虫程序的稳定性。使用IP代理技术还有其他的优点,比如增强隐私保护、提高数据访问速度、降低目标网站的压力等等。总之,IP代理技术已经成为了Python爬虫程序中不可或缺的一部分。
Python提供了丰富的第三方库,可以帮助我们实现IP代理功能。其中最常用的是requests库和urllib库。以下是使用requests库实现IP代理的示例代码:

```    #! -*- encoding:utf-8 -*-

    import requests
    import random

    # 要访问的目标页面
    targetUrl = "http://httpbin.org/ip"

    # 要访问的目标HTTPS页面
    # targetUrl = "https://httpbin.org/ip"

    # 代理服务器(产品官网 www.16yun.cn)
    proxyHost = "t.16yun.cn"
    proxyPort = "31111"

    # 代理验证信息
    proxyUser = "username"
    proxyPass = "password"

    proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
        "host" : proxyHost,
        "port" : proxyPort,
        "user" : proxyUser,
        "pass" : proxyPass,
    }

    # 设置 http和https访问都是用HTTP代理
    proxies = {
        "http"  : proxyMeta,
        "https" : proxyMeta,
    }


    #  设置IP切换头
    tunnel = random.randint(1,10000)
    headers = {"Proxy-Tunnel": str(tunnel)}



    resp = requests.get(targetUrl, proxies=proxies, headers=headers)

    print resp.status_code
    print resp.text
相关文章
|
25天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
10天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
20 1
|
11天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
11天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
49 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
41 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
23天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
52 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
1月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
46 2
|
10天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
19 0
|
1月前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
43 1