谁发表了最具影响力的AI研究?谷歌遥遥领先,OpenAI成果转化率完胜DeepMind(1)

简介: 谁发表了最具影响力的AI研究?谷歌遥遥领先,OpenAI成果转化率完胜DeepMind


统计了近三年引用量最高的 100 篇论文,我们发现……


谁在发表最具影响力的 AI 研究?在如今「百花齐放」的时代,这个问题极具挖掘空间。你可能会猜到一些结论:比如谷歌、微软、OpenAI、DeepMind 这些顶级机构,类似这样的结论只猜对了一半,还有另外一些信息,向我们揭露了原本不为人知的结论。随着 AI 创新的飞速发展,尽快获取一些「情报」是至关重要的。毕竟几乎没人有时间去阅读所有的东西,但可以肯定的是,本文整理的这些论文具备改变人工智能技术发展方向的潜力。对研发团队影响力的真正考验当然是技术如何落地在产品中,OpenAI 在 2022 年 11 月底发布了 ChatGPT,震撼了整个领域,这是继他们 2022 年 3 月的论文「利用人类反馈训练遵循指令的语言模型」(Training language models to follow instructions with human feedback)之后的又一次突破。如此迅速的产品落地是罕见的。所以,为了洞察到更多信息,近日,Zeta Alpha 的统计采用了一个经典的学术指标:


引用次数对 2022 年、2021 年和 2020 年每年被引用次数最多的 100 篇论文的详细分析,可以深入了解目前发表最具影响力的 AI 研究的机构和国家 / 地区。一些初步结论是:美国和谷歌仍然占主导地位,DeepMind 在这一年也取得了辉煌的成就,但考虑到产出量,OpenAI 在产品影响和研究方面确实处于前列,并能快速和广泛地被引用。

资料来源:Zeta Alpha。如上图所示,另外一个重要结论是:中国在研究引用量上的影响力排行第二,但与美国相比仍存在差距,并不像很多报道中描述的那样「追平甚至超越」。利用来自 Zeta Alpha 平台的数据,然后结合人工策划,本文收集了 2022 年、2021 年和 2020 年人工智能领域被引用次数最多的论文,并分析了作者的所属机构和国家 / 地区。这使得能够按照研发影响而不是纯粹的出版数据对这些论文进行排名。为了创建分析结果,本文首先在 Zeta Alpha 平台上收集了每年被引用次数最多的论文,然后手动检查首次发表日期(通常是 arXiv 预印本),以便将论文放在正确的年份中。然后通过在 Semantic Scholar 上挖掘高引用率的人工智能论文来补充这个名单,因为 Semantic Scholar 的覆盖面更广,而且能够按引用次数排序。这主要是发现了来自高影响力的出版商(如 Nature、Elsevier、Springer 和其他期刊)之外的论文。然后,将每篇论文在谷歌学术上的引用次数作为代表指标,并按这个数字对论文进行排序,得出一年中的前 100 名。对于这些论文,本文使用了 GPT-3 来提取作者、隶属机构和国家 / 地区,并手动检查这些结果(如果国家 / 地区在出版物中不明显,就采用该组织总部所在的国家 / 地区)。如果一篇论文有来自多个机构的作者,每个机构算一次。看了这份排行榜之后,大佬 Yann LeCun 表示很欣慰:「在 Meta AI,我们倾向于出版质量而不是数量。这就是为什么在 2022 年被引用最多的 100 篇人工智能论文中,Meta AI 撰写(或共同撰写)了 16 篇,仅次于谷歌的 22 篇,排名第二。我们的研究正在对社会产生巨大的影响。(此外,纽约大学的排名也很赞)。」所以,刚才谈论的这些 Top 论文有哪些?在深入了解这些数字之前,让我们先了解一下过去三年的热门论文。相信你会认出其中的几篇。2022 年热门论文

1、AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models



2、ColabFold: making protein folding accessible to all



3、Hierarchical Text-Conditional Image Generation with CLIP Latents


  • 论文链接:https://arxiv.org/abs/2204.06125
  • 机构:OpenAI
  • 引用次数:718
  • 主题:DALL・E 2, complex prompted image generation that left most in awe


4、A ConvNet for the 2020s


  • 论文链接:https://arxiv.org/abs/2201.03545
  • 机构:Meta,UC 伯克利
  • 引用次数:690
  • 主题:A successful modernization of CNNs at a time of boom for Transformers in Computer Vision


5、PaLM: Scaling Language Modeling with Pathways


  • 论文链接:https://arxiv.org/abs/2204.02311
  • 机构:谷歌
  • 引用次数:452
  • 主题:Google's mammoth 540B Large Language Model, a new MLOps infrastructure, and how it performs


2021 年热门论文1、《Highly accurate protein structure prediction with AlphaFold》


2、《Swin Transformer: Hierarchical Vision Transformer using Shifted Windows》


3、《Learning Transferable Visual Models From Natural Language Supervision》

  • 论文链接:https://arxiv.org/abs/2103.00020
  • 机构:OpenAI
  • 引用次数:3204
  • 主题:CLIP, image-text pairs at scale to learn joint image-text representations in a self supervised fashion


4、《On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?》

  • 论文链接:https://dl.acm.org/doi/10.1145/3442188.3445922
  • 机构:U. Washington, Black in AI, The Aether
  • 引用次数:1266
  • 主题:Famous position paper very critical of the trend of ever-growing language models, highlighting their limitations and dangers


5、《Emerging Properties in Self-Supervised Vision Transformers》

  • 论文链接:https://arxiv.org/pdf/2104.14294.pdf
  • 机构:Meta
  • 引用次数:1219
  • 主题:DINO, showing how self-supervision on images led to the emergence of some sort of proto-object segmentation in Transformers


2020 年热门论文1、《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》

  • 论文链接:https://arxiv.org/abs/2010.11929
  • 机构:谷歌
  • 引用次数:11914
  • 主题:The first work showing how a plain Transformer could do great in Computer Vision


2、《Language Models are Few-Shot Learners》


3、《YOLOv4: Optimal Speed and Accuracy of Object Detection》

  • 论文链接:https://arxiv.org/abs/2004.10934
  • 机构:Academia Sinica, Taiwan
  • 引用次数:8014
  • 主题:Robust and fast object detection sells like hotcakes


4、《Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer》

  • 论文链接:https://arxiv.org/abs/1910.10683
  • 机构:谷歌
  • 引用次数:5906
  • 主题:A rigorous study of transfer learning with Transformers, resulting in the famous T5


5、《Bootstrap your own latent: A new approach to self-supervised Learning》

  • 论文链接:https://arxiv.org/abs/2006.07733
  • 机构:DeepMind,Imperial College
  • 引用次数:2873
  • 主题:Showing that negatives are not even necessary for representation learning



相关文章
|
2月前
|
人工智能 自然语言处理 安全
💻 Codex 来了:OpenAI 推出多任务软件工程 AI 代理,开发者工作方式将被重塑?
Codex 是 OpenAI 推出的一款云端智能开发代理,基于优化后的 Codex-1 模型,能够执行从代码编写、Bug 修复到 PR 提交的完整工程任务。通过 ChatGPT 的界面,用户可向 Codex 分配任务,它将在独立沙盒中运行并返回结果。Codex 支持多任务异步处理,遵循项目规范(AGENTS.md),并生成日志与测试报告以确保透明性。作为“AI 参与式开发”的里程碑,Codex 不仅提升效率,还可能重塑开发者角色,使他们从具体编码转向指导 AI 完成任务,推动软件工程进入意图驱动的新时代。
186 16
|
3月前
|
人工智能 测试技术 API
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
PaperBench是OpenAI推出的开源评测框架,通过8316个评分节点系统评估AI智能体复现学术论文的能力,涵盖理论理解、代码实现到实验执行全流程。
204 30
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
AutoGLM沉思是由智谱AI推出的一款开创性AI智能体,它突破性地将深度研究能力与实际操作能力融为一体,实现了AI从被动响应到主动执行的跨越式发展。
274 16
AutoGLM沉思:智谱AI推出首个能"边想边干"的自主智能体!深度研究+多模态交互,颠覆传统AI工作模式
|
3月前
|
人工智能 搜索推荐 开发者
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
OpenAI最新开源的BrowseComp基准包含1266个高难度网络检索问题,覆盖影视、科技、艺术等九大领域,其最新Deep Research模型以51.5%准确率展现复杂信息整合能力,为AI代理的浏览能力评估建立新标准。
168 4
GPT-4o测评准确率竟不到1%!BrowseComp:OpenAI开源AI代理评测新基准,1266道高难度网络检索问题
|
4月前
|
人工智能 自然语言处理
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
谷歌推出专为药物研发设计的TxGemma大模型,具备药物特性预测、生物文献筛选、多步推理等核心能力,提供20亿至270亿参数版本,显著提升治疗开发效率。
171 7
TxGemma:谷歌DeepMind革命药物研发!270亿参数AI药理学家24小时在线
|
4月前
|
人工智能 vr&ar 图形学
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
牛津大学与谷歌联合推出的Bolt3D技术,能在单个GPU上仅用6.25秒从单张或多张图像生成高质量3D场景,基于高斯溅射和几何多视角扩散模型,为游戏、VR/AR等领域带来革命性突破。
169 2
谷歌DeepMind联手牛津推出Bolt3D:AI秒速3D建模革命!单GPU仅需6秒生成3D场景
|
3月前
|
人工智能 自然语言处理 测试技术
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
Codex CLI是OpenAI推出的轻量级AI编程智能体,基于自然语言指令帮助开发者高效生成代码、执行文件操作和进行版本控制,支持代码生成、重构、测试及数据库迁移等功能。
346 0
自然语言生成代码一键搞定!Codex CLI:OpenAI开源终端AI编程助手,代码重构+测试全自动
|
4月前
|
存储 人工智能 搜索推荐
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
425 8
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
TsingtaoAI亮相2025青岛西海岸科技成果对接会,以具身智能实训赋能AI人才培养
3月26日青岛——由青岛市科学技术局指导、青岛西海岸新区管委联合上海技术交易所等多家机构主办的“2025青岛西海岸新区科技成果对接会”在青岛金沙滩蓝海御华酒店盛大启幕。青岛市委常委,西海岸新区工委书记、区委书记孙永红,青岛市科学技术局副局长张栋华和上海技术交易所总裁颜明峰等参加会议并致辞。TsingtaoAI受邀参会并发表主题分享,公司负责人汶生以《基于DeepSeek的具身智能实训》为题,向与会嘉宾展示了AI具身智能技术如何突破传统边界,助力AI人才从实验室走向产业一线。
99 1
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
通古大模型由华南理工大学开发,专注于古籍文言文处理,具备强大的古文句读、文白翻译和诗词创作功能。
653 11
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器

热门文章

最新文章