测试时自适应(Test-Time Adaptation, TTA)方法在测试阶段指导模型进行快速无监督 / 自监督学习,是当前用于提升深度模型分布外泛化能力的一种强有效工具。 然而在动态开放场景中,稳定性不足仍是现有 TTA 方法的一大短板,严重阻碍了其实际部署。 为此,来自华南理工大学、腾讯 AI Lab 及新加坡国立大学的研究团队,从统一的角度对现有 TTA 方法在动态场景下不稳定原因进行分析,指出依赖于 Batch 的归一化层是导致不稳定的关键原因之一,另外测试数据流中某些具有噪声 / 大规模梯度的样本容易将模型优化至退化的平凡解。 基于此进一步提出锐度敏感且可靠的测试时熵最小化方法 SAR,实现动态开放场景下稳定、高效的测试时模型在线迁移泛化。 本工作已入选 ICLR 2023 Oral (Top-5% among accepted papers)。
- 论文标题:Towards Stable Test-time Adaptation in Dynamic Wild World
- 论文地址:https://openreview.net/forum?id=g2YraF75Tj
- 开源代码:https://github.com/mr-eggplant/SAR
什么是 Test-Time Adaptation?
传统机器学习技术通常在预先收集好的大量训练数据上进行学习,之后固定模型进行推理预测。这种范式在测试与训练数据来自相同数据分布时,往往取得十分优异的表现。但在实际应用中,测试数据的分布很容易偏离原始训练数据的分布(distribution shift),例如在采集测试数据的时候:1)天气的变化使得图像中包含有雨雪、雾的遮挡;2)由于拍摄不当使得图像模糊,或传感器退化导致图像中包含噪声;3)模型基于北方城市采集数据进行训练,却被部署到了南方城市。以上种种情况十分常见,但对于深度模型而言往往是很致命的,因为在这些场景下其性能可能会大幅下降,严重制约了其在现实世界中(尤其是类似于自动驾驶等高风险应用)的广泛部署。
图 1 Test-Time Adaptation 示意图(参考 [5])及其与现有方法特点对比
不同于传统机器学习范式,如图 1 所示在测试样本到来后,Test-Time Adaptation (TTA) 首先基于该数据利用自监督或无监督的方式对模型进行精细化微调,而后再使用更新后的模型做出最终预测。典型的自 / 无监督学习目标包括:旋转预测、对比学习、熵最小化等等。这些方法均展现出了优异的分布外泛化(Out-of-Distribution Generalization)性能。相较于传统的 Fine-Tuning 以及 Unsupervised Domain Adaptation 方法,Test-Time Adaptation 能够做到在线迁移,效率更高也更加普适。另外完全测试时适应方法 [2] 其可以针对任意预训练模型进行适应,无需原始训练数据也无需干涉模型原始的训练过程。以上优点极大增强了 TTA 方法的现实通用性,再加上其展现出来的优异性能,使得 TTA 成为迁移、泛化等相关领域极为热点的研究方向。
为什么要 Wild Test-Time Adaptation?
尽管现有 TTA 方法在分布外泛化方面已表现出了极大的潜力,但这种优异的性能往往是在一些特定的测试条件下所获得的,例如测试数据流在一段时间内的样本均来自于同一种分布偏移类型、测试样本的真实类别分布是均匀且随机的,以及每次需要有一个 mini-batch 的样本后才可以进行适应。但事实上,以上这些潜在假设在现实开放世界中是很难被一直满足的。在实际中,测试数据流可能以任意的组合方式到来,而理想情况下模型不应对测试数据流的到来形式做出任何假设。如图 2 所示,测试数据流完全可能遇到:(a)样本来自不同的分布偏移(即混合样本偏移);(b)样本 batch size 非常小(甚至为 1);(c)样本在一段时间内的真实类别分布是不均衡的且会动态变化的。本文将上述场景下的 TTA 统称为 Wild TTA。但不幸的是,现有 TTA 方法在这些 Wild 场景下经常会表现得十分脆弱、不稳定,迁移性能有限,甚至可能损坏原始模型的性能。因此,若想真正实现 TTA 方法在实际场景中的大范围、深度化应用部署,则解决 Wild TTA 问题即是其中不可避免的重要一环。
图 2 模型测试时自适应中的动态开放场景
解决思路与技术方案
本文从统一角度对 TTA 在众多 Wild 场景下失败原因进行分析,进而给出解决方案。
1. 为何 Wild TTA 会不稳定?
(1)Batch Normalization (BN) 是导致动态场景下 TTA 不稳定的关键原因之一:现有 TTA 方法通常是建立在 BN 统计量自适应基础之上的,即使用测试数据来计算 BN 层中的均值及标准差。然而,在 3 种实际动态场景中,BN 层内的统计量估计准确性均会出现偏差,从而引发不稳定的 TTA:
- 场景(a):由于 BN 的统计量实际上代表了某一种测试数据分布,使用一组统计量参数同时估计多个分布不可避免会获得有限的性能,参见图 3;
- 场景(b):BN 的统计量依赖于 batch size 大小,在小 batch size 样本上很难得到准确的 BN 的统计量估计,参见图 4;
- 场景(c):非均衡标签分布的样本会导致 BN 层内统计量存在偏差,即统计量偏向某一特定类别(该 batch 中占比较大的类别),参见图 5;
为进一步验证上述分析,本文考虑 3 种广泛应用的模型(搭载不同的 Batch\Layer\Group Norm),基于两种代表性 TTA 方法(TTT [1] 和 Tent [2])进行分析验证。最终得出结论为:batch 无关的 Norm 层(Group 和 Layer Norm)一定程度上规避了 Batch Norm 局限性,更适合在动态开放场景中执行 TTA,其稳定性也更高。因此,本文也将基于搭载 Group\Layer Norm 的模型进行方法设计。
图 3 不同方法和模型(不同归一化层)在混合分布偏移下性能表现
图 4 不同方法和模型(不同归一化层)在不同 batch size 下性能表现。图中阴影区域表示该模型性能的标准差,ResNet50-BN 和 ResNet50-GN 的标准差过小导致在图中不显著(下图同)
图 5 不同方法和模型(不同归一化层)在在线不平衡标签分布偏移下性能表现,图中横轴 Imbalance Ratio 越大代表的标签不平衡程度越严重
(2)在线熵最小化易将模型优化至退化的平凡解,即将任意样本预测到同一个类:根据图 6 (a) 和 (b) 显示,在分布偏移程度严重(level 5)时,在线自适应过程中突然出现了模型退化崩溃现象,即所有样本(真实类别不同)被预测到同一类;同时,模型梯度的 范数在模型崩溃前后快速增大而后降至几乎为 0,见图 6(c),侧面说明可能是某些大尺度 / 噪声梯度破坏了模型参数,进而导致模型崩溃。
图 6 在线测试时熵最小化中的失败案例分析