Python 发展趋势:与 Rust 深度融合、更易于编写 Web 应用

简介: Python 发展趋势:与 Rust 深度融合、更易于编写 Web 应用

大家好,我是猫哥,好久不见!2022 年末的时候,我不可避免地阳了,借着身体不舒服就停更了,接踵而至的是元旦和春节假期,又给自己放了假,连年终总结也鸽了,一懈怠就到了 2 月中旬……

现在是我家娃出生的第三个月,全家人大部分的时间和精力都在他身上,结果是幸福与疲累共存。新生儿是那么的可爱,又是那么的“吵闹”,影响着我们的情绪和生活节奏。这三个月的基调跟过去的日子完全不同,它是新一年的开始,是未来日子的底色,引导着我们的生活重心偏移。

在过去的两年时间里,我工作上的任务与 Python 基本无关了,转向了 Java 的阵营。然而,在业余时间里,我对 Python 的热情一直不灭(尽管有退减),直到近期,懒怠的念头变多了。

身心状态与家庭节奏是这段时间停更的主要原因吧。

今年的这第一篇文章,就当作给大家问声好,给自己打个气吧。唯愿 2023 年,家庭、工作与兴趣都能顺顺利利,不留遗憾,相信前方有美好的未来!


最近的 Pycoder‘s Weekly 中有一篇《Three Python trends in 2023》,它介绍了当下较为热门的三个话题。我简略翻译/摘录出来,分享给大家。


趋势一:Python🤝Rust


Rust 对 Python 技术生态的影响越来越大了。关键的赋能者是  PyO3,它为 Python 提供了 Rust 绑定。有了 PyO3 后,Python 可以轻松调用 Rust 代码,同时 Rust 也能执行 Python 代码。

另外,下面的工具在进一步加深这两门语言的友谊:

  • pydantic-core:pydantic v2 的校验核心。pydantic 的作者 Samuel Colvin 将在 Pycon 2023 上发表相关演讲
  • ruff:速度极快的 linter。它拥有几乎与 Flake8 相同的功能,包括一些流行的插件。此外,它具有与 autoflake、isort、pydocstyle 和 pyupgrade 等工具相同的功能。因此,它基本上是检测 Python 代码的瑞士军刀。
  • polars:更快的 DataFrames,是超级广泛使用的 pandas 的性能竞争对手。
  • Robyn:带 Rust 运行时的异步 Python web 框架。这有一篇博客关于《Robyn 的 2023 年路线图》。

Rust 目前的热度极高,未来它将融入到更多 Python 相关的项目和工具中。Python + Rust 的组合在未来的就业市场上,也可能有很高的需求。


趋势二:Web 应用


从历史上看,用户界面并不是 Python 的强项。然而,最近机器学习和数据应用的兴起,催生了一批”使用纯 Python 的 Web UI”框架,例如 StreamlitNiceGUIPynecone。这样的框架为 Pythonistas 提供了构建 Web 应用的快捷方式,不再需要学习 JavaScript+HTML+CSS 技术栈。

另一条线路是浏览器中的 Python。通过 PyodidePyScript和相关工具,这已经实现了。它的基础推动者是与所有主流浏览器兼容的 WASM (WebAssembly)。在写本文时, CPython 源码库中已经有了对 CPython 的 WASM 构建的实验性支持。如果你想深入了解,可以查看 Python 3.11 in the Web Browser,这是 Cristian Heimes 在 PyConDE 2022 上的演讲。

WASM 的故事还处于早期阶段,但它有着巨大的潜力,将使 Python 更容易访问并支持新的使用场景。我希望在不久的将来这个领域会有大量的创新。


趋势三:类型安全


CPython 对类型的支持在不断发展。例如,Python 3.10 发布了 4 个与类型相关的 PEP, 3.11 发布了 5 个。此外,PyCon 还有专门的 Typing Summit。与此同时,与类型相关的工具已经成熟化和多样化。例如,现在有一大把静态类型检查器可供选择(例如 mypy、Pyright、pytype 和 Pyre)。此外,一些包(例如 pydantic)可以在运行时巧妙地利用类型信息。(延伸阅读:介绍几款 Python 类型检查工具

*args, **kwargs 的时代即将结束,它们将被带有类型注释的签名所取代。类型极大地提高了代码可读性。当可读性与便利的 IDE 相结合,阅读庞大的 Python 代码库将变得相对容易。另一方面,在习惯了类型信息带来的超能力之后,无类型的代码库会更让人感到难受。

无论现今和未来的趋势如何,Python 比以往任何时候都更受欢迎。在写本文时(2023 年 2 月),PyPI 中有 431k 个项目和 665k 个用户。在“how often language tutorials are searched in Google”中,Python 以 27.93% 的份额领先(来源)。Reddit 上的 r/Python 话题有 1.1 万订阅,r/learnpython 有 68 万订阅。

目录
相关文章
|
5天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
17天前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
44 7
|
15天前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
33 3
|
27天前
|
数据库 Python
Python 应用
Python 应用。
39 4
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
87 6
|
8天前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
24 2
|
15天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
39 8
|
16天前
|
机器人 计算机视觉 Python
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
Python作为一种高效、易读且功能强大的编程语言,在教育领域的应用日益广泛
33 5
|
18天前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
|
23天前
|
关系型数据库 数据库 数据安全/隐私保护
Python Web开发
Python Web开发
55 6