YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(二)

简介: YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(二)

3输出端


4.1 优化方法

YOLO V5的作者提供了2个优化函数Adam和SGD,并都预设了与之匹配的训练超参数。默认为SGD。YOLO V4使用SGD。

YOLO V5的作者建议是,如果需要训练较小的自定义数据集,Adam是更合适的选择,尽管Adam的学习率通常比SGD低。但是如果训练大型数据集,对于YOLOV5来说SGD效果比Adam好

实际上学术界上对于SGD和Adam哪个更好,一直没有统一的定论,取决于实际项目情况。

4.2 损失函数

image.png

通过上图我们可以看到,对于图中的目标,都会输出class_num+4+1长度的向量,比如针对coco数据集有80个类别,就会输出长度为85的特征向量,其中所包含的内容如下图所示:

image.png

图中向量包含4个坐标信息,一个包含目标概率和80个类别得分,换句话解释就是“这个图像中是否有目标(物体出现的概率)有的话是什么(80类的类别得分)?然后就是这个目标物体在哪里(box坐标位置)?”

其实面对上述的3个输出,也对应YOLOv5的3个分支的,其分别是obj分支cls分支box分支

1、obj分支

obj分支输出的是该anchor中是否含有物体的概率,默认使用BCEWithLogits Loss。

BCEWithLogitsLoss是将BCELoss(BCE:Binary cross entropy)和sigmoid融合了,也就是说省略了sigmoid这个步骤;BCELoss的数学公式如下:

image.png

class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super(BCEBlurWithLogitsLoss, self).__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha
    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()

2、cls分支

cls分支输出的是该anchor属于哪一类的概率,也默认使用BCEWithLogits Loss。

class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super(BCEBlurWithLogitsLoss, self).__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha
    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()

例如,对于coco数据集上训练的YOLO的每个anchor的维度都是85,前5个属性是(Cx,Cy,w,h,confidence),confidence对应obj,后80个维度对应cls。

3、box分支

这里的box分支输出的便是物体的具体位置信息了,通过前面对于坐标参数化的分析可以知道,具体的输出4个值为、、以及,然后通过前面的参数化反转方式与GT进行计算loss,对于回归损失,yolov3使用的loss是smooth l1损失。Yolov5的边框(Bounding box)回归的损失函数默认使用的是CIoU,不是GIoU,不是DIoU,是CIoU。

回归损失的发展

下面用一张图粗略看一下IoU,GIoU,DIoU,CIoU:

image.png

式中,、,、分别代表候选框的中心点坐标。

下面大概说一下每个IOU损失的局限性:

IoU Loss 有2个缺点

  • 当预测框和目标框不相交时,IoU(A,B)=0时,不能反映A,B距离的远近,此时损失函数不可导,IoU Loss 无法优化两个框不相交的情况。
  • 假设预测框和目标框的大小都确定,只要两个框的相交值是确定的,其IoU值是相同时,IoU值不能反映两个框是如何相交的。

GIoU Loss 有1个缺点

  • 当目标框完全包裹预测框的时候,IoU和GIoU的值都一样,此时GIoU退化为IoU, 无法区分其相对位置关系;

DIoU Loss 有1个缺点

  • 当预测框的中心点的位置都一样时, DIoU无法区分候选框位置的质量;

综合IoU、GIoU、DIoU的种种局限性,总结一个好的bounding box regressor包含3个要素:

  1. 、Overlapping area
  2. 、Central point distance
  3. 、Aspect ratio

因此,YOLOv5使用的是CIoU Loss:

iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
lbox += (1.0 - iou).mean()  # iou loss
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
    box2 = box2.T
    # Get the coordinates of bounding boxes
    if x1y1x2y2:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
    else:  # transform from xywh to xyxy
        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
    # Intersection area
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
    # Union Area
    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
    union = w1 * h1 + w2 * h2 - inter + eps
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU

4、Loss计算

def compute_loss(p, targets, model):  # predictions, targets, model
    device = targets.device
    lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
    tcls, tbox, indices, anchors = build_targets(p, targets, model)  # targets
    h = model.hyp  # hyperparameters
    # Define criteria
    BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
    BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
    # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
    cp, cn = smooth_BCE(eps=0.0)
    # Focal loss
    g = h['fl_gamma']  # focal loss gamma
    if g > 0:
        BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
   。。。。。。

4.3、后处理之DIoU NMS

image.png

image.png

在上图重叠的摩托车检测中,中间的摩托车因为考虑边界框中心点的位置信息,也可以回归出来。因此在重叠目标的检测中,DIOU_nms的效果优于传统的nms。

为什么不用CIoU NMS呢?

因为前面讲到的CIOU loss,是在DIOU loss的基础上,添加的影响因子,包含ground truth标注框的信息,在训练时用于回归。但在测试过程中,并没有ground truth的信息,不用考虑影响因子,因此直接用DIOU NMS即可。


4YOLOv5 Lite训练自己的数据集


5.1 git clone仓库代码

clone YOLOv5 Lite代码并下载coco的预训练权重。

$ git clone https://github.com/ppogg/YOLOv5-Lite
$ cd YOLOv5-Lite
$ pip install -r requirements.txt

5.2 处理数据集格式

这里可以直接参考coco128的数据集形式进行整理:

文件夹目录如下图所示:

5.3 配置超参数

主要是配置data文件夹下的coco128.yaml中的数据集位置和种类:

image.png

image.png

5.4 配置模型

这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

image.png

修改nc参数

目前支持的模型种类如下所示:

image.png

5.3 训练

$ python train.py --data coco.yaml --cfg v5lite-e.yaml --weights v5lite-e.pt --batch-size 128
                                         v5lite-s.yaml --weights v5lite-s.pt --batch-size 128
                                         v5lite-c.yaml           v5lite-c.pt               96
                                         v5lite-g.yaml           v5lite-g.pt               64

如果您是多卡进行训练,则:

$ python -m torch.distributed.launch --nproc_per_node 2 train.py

5.4 检测结果

$ python path/to/detect.py --weights v5lite-e.pt --source 0 img.jpg        # image

image.png

检测结果

相关文章
|
7月前
|
并行计算 算法 物联网
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
LLM 大模型学习必知必会系列(七):掌握分布式训练与LoRA/LISA微调:打造高性能大模型的秘诀进阶实战指南
|
7月前
|
机器学习/深度学习 存储 算法
YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】
YOLO落地部署 | 一文全览YOLOv5最新的剪枝、量化的进展【必读】
1086 0
|
机器学习/深度学习 数据采集 搜索推荐
推荐系统!基于tensorflow搭建混合神经网络精准推荐! ⛵
本文从常见的推荐系统方法(基于内容、协同过滤等近邻算法、基于知识等)讲起,一直覆盖到前沿的新式推荐系统,不仅详细讲解原理,还手把手教大家如何用代码实现。
5186 5
推荐系统!基于tensorflow搭建混合神经网络精准推荐! ⛵
|
机器学习/深度学习 移动开发 数据挖掘
如何用CSharpOpenCv集成Yolov3的模型
如何用CSharpOpenCv集成Yolov3的模型
321 0
如何用CSharpOpenCv集成Yolov3的模型
|
机器学习/深度学习 人工智能 TensorFlow
YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(三)
YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(三)
630 0
|
缓存 资源调度 算法
YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(一)
YOLOv5-Lite 详解教程 | 嚼碎所有原理、训练自己数据集、TensorRT部署落地应有尽有(一)
1324 0
|
自然语言处理
初体验图像分类模型
自建1300类常见物体标签体系,覆盖常见的日用品,动物,植物,家具,设备,食物等物体,标签从海量中文互联网社区语料进行提取,保留了出现频率较高的常见物体名称。模型结构采用最新的ViT-Base结构。
初体验图像分类模型
|
机器学习/深度学习 并行计算 固态存储
YOLO系列 | 一份YOLOX改进的实验报告,并提出更优秀的模型架构组合!
YOLO系列 | 一份YOLOX改进的实验报告,并提出更优秀的模型架构组合!
209 0
|
机器学习/深度学习 自然语言处理 算法
EfficientFormer | 苹果手机实时推理的Transformer模型,登顶轻量化Backbone之巅
EfficientFormer | 苹果手机实时推理的Transformer模型,登顶轻量化Backbone之巅
440 0
|
PyTorch 算法框架/工具 计算机视觉
【项目实践】基于PyTorch实现C3D模型的视频行为识别实践(二)
【项目实践】基于PyTorch实现C3D模型的视频行为识别实践(二)
423 0

热门文章

最新文章