阿里提出QuadTree Transformer | 最轻、最强的Vision Transformer Backbone(一)

简介: 阿里提出QuadTree Transformer | 最轻、最强的Vision Transformer Backbone(一)

1简介


Transformer可以通过注意力模块捕获长期依赖关系,并在自然语言处理任务中显示出巨大的成功。近年来,Transformer也被用于计算机视觉任务,用于图像分类、目标检测、语义分割、特征匹配等。通常情况下,图像被分成几个小的patches,这些小patches被Flatten并作为单词符号输入Transformer,以评估注意力得分。而在Token数量上,即图像patch的数量上,Transformer的计算复杂度是二次的。因此,将Transformer应用于计算机视觉应简化所涉及的计算。

为了在视觉任务中利用标准Transformer,许多工作选择在低分辨率或稀疏Token上应用它。ViT使用16×16像素的粗图像块来限制Token的数量。DPT将ViT的低分辨率结果提升到高分辨率特征图,以实现密集任务的预测。SuperGlue将Transformer应用于稀疏图像关键点。Germain和Li等人专注于通信和立体匹配应用,也将Transformer应用于低分辨率特征图。

然而,正如在若干工作中所展示的,高分辨率Transformer的应用有利于各种任务。因此,设计高效的Transformer以降低计算复杂度已成为许多研究的重点。线性近似Transformer使用线性方法近似标准的注意力计算。然而,实证研究表明,线性Transformer在视觉任务方面较差。为了降低计算成本,PVT使用下采样的key和value,这对捕获像素级细节是有害的。相比之下,Swin Transformer将局部窗口中的注意力限制在一个注意力块中,这可能会损害长期依赖关系(这是Transformer最重要的优点)。

与之前的所有工作不同,本文设计了一个高效的视觉Transformer,它可以捕捉精细的图像细节和长期依赖关系。在观察到大多数图像区域是不相关的启发下,构建了Token pyramids,并以从粗到细的方式计算注意力。这样,当对应的粗粒度区域没有前景时,可以快速跳过细粒度的不相关区域。

图1

如图1所示,在level-1,用B中的所有patch计算A中的蓝色patch的注意力,并选择top-K个patch(这里K=2),这也是用蓝色高亮显示的;在level-2中,对于A图中4个Patches内的sub-patch(即level-1的蓝色patch对应的sub-patch),这里只使用level-1 B图中top-K个patch对应的sub-patch来计算它们的注意力。所有其他的阴影sub-patch被跳过以减少计算。这里用黄色和绿色标出A图中的2个sub-patch。B图中对应的top-K个patch也用同样的颜色高亮显示。这个过程在level-3进行迭代,在level-3中,只显示与level-1的绿色sub-patch相对应的sub-sub-patch

通过这种方式,该方法既能获得精细的规模注意力,又能保持长期的联系。最重要的是,在整个过程中只有稀疏的注意力被评估。因此,本文方法具有较低的内存和计算成本。

在实验中,证明了QuadTree Transformer在需要cross attention的任务(如特征匹配和立体视觉)和只使用Self-Attention的任务(如图像分类和目标检测)中的有效性。

与相关的Efficient Transformer相比,QuadTree Transformer实现了最先进的性能,显著减少了计算量。

在特征匹配方面,在ScanNet中实现了60.3 AUC@20,比线性Transformer高2.7,但FLOPs类似。

在立体匹配中,实现了与标准Transformer相似的端点误差,但减少了约50%的FLOPs和40%的内存。

在图像分类方面,在ImageNet中获得了82.6%的top-1准确率,比ResNet高6.2%,比Swin Transformer-T高1.3%,且参数更少,FLOPs数更少。

在目标检测方面,QuadTree Attention+RetinaNet在COCO中获得了46.2 AP,比PVTv2 Backbone高1.6,但FLOPs降低了约35%。


2相关工作


2.1 Efficient Transformers

变形金刚在自然语言处理和计算机视觉方面都取得了巨大的成功。由于二次型计算的复杂性,在处理长序列令牌时无法进行充分注意的计算。因此,许多工作都在设计高效的变压器,以降低计算复杂度。Efficient Transformers可分为3类:

  1. Linear approximate attention:通过对softmax注意力进行线性化来近似全注意矩阵,通过先计算key和value的乘积来加速计算;
  2. Point-Based Linear Transformers:使用学习过的固定大小的诱导点对输入符号进行关注,从而将计算量降低到线性复杂度。然而,在不同的工作条件下,这些线性Transformer的性能都不如标准Transformer。
  3. Sparse attention:包括Longformer、Big Bird等,每个query token都是针对key和value token的一部分,而不是整个序列。

与这些研究不同的是,QuadTree Attention可以根据粗糙水平上的注意力分数快速跳过无关token。因此,在保持较高效率的同时,实现了较少的信息损失。

2.2 Vision Transformers

Transformers在许多视觉任务中都表现出了非凡的表现。ViT将Transformers应用于图像识别,证明了Transformers在大规模图像分类方面的优越性。然而,由于Softmax注意力的计算复杂度,在密集的预测任务中,如目标检测、语义分割等,很难应用Transformers。

为了解决这个问题,Swin Transformer限制了局部窗口中的注意力计算。Focal Transformers使用2层窗口来提高捕获远程连接的能力,以实现局部注意力方法。金字塔视觉Transformers(PVT)通过下采样key和value token来减少全局注意力方法的计算量。尽管这些方法在各种任务中都显示出了改进,但它们在捕获长期依赖或精细水平注意力方面都存在缺陷。与这些方法不同的是,QuadTree Attention通过在单个块中计算出从全图像级别到最优token级别的注意力,同时捕获局部和全局注意力。此外,K-NN Transformers从与最相似的top-K个token中聚合消息,但KNN计算所有对query token和key token之间的注意力得分,因此仍然具有二次复杂度。

除了Self-Attention,许多任务在很大程度上都能从Cross Attention中受益。Superglue过程检测具有Self-Attention和Cross Attention的局部描述符,并在特征匹配方面显示出显著的改进。标准Transformer可以应用于SuperGlue,因为只考虑稀疏的关键点。SGMNet通过seeded matches进一步减少了计算量。LoFTR在低分辨率特征图上利用线性Transformer生成密集匹配。对于立体匹配,STTR沿着极线应用Self-Attention和Cross Attention,并通过梯度检查点减少了内存消耗。然而,由于需要处理大量的点,这些工作要么使用有损性能的线性Transformer,要么使用有损效率的标准Transformer。

相比之下,QuadTree Transformer与线性Transformer相比具有显著的性能提升,或与标准Transformer相比效率提高。此外,它还可以应用于Self-Attention和Cross Attention。


3QuadTree Transformer


3.1 Attention in Transformer

Vision Transformers在许多任务中都取得了巨大的成功。Transformer的核心是注意力模块,它可以捕获特征嵌入之间的远程信息。给定2个图像嵌入点和,注意力模块在它们之间传递信息。自注意力机制是指和相同时的情况,而Cross Attention则是指和不同时更普遍的情况。它首先通过下面的等式生成query Q、key K和value V,

其中,、和都是可学习的参数。然后,通过计算query和key之间的注意力得分来进行消息聚合,如下:

image.png

其中,C是嵌入通道的维数。上述过程具有的计算复杂度,其中N是Vision Transformer中图像patch的数量。这种二次复杂度阻碍了Transformer被应用于需要高分辨率输出的任务。为了解决这个问题,PVT采用了下采样K和V,而Swin Transformer限制了局部窗口内的注意力计算。

3.2 QuadTree Attention

为了降低Vision Transformer的计算成本,提出了QuadTree Attention。顾名思义,借用了 quadtrees的概念, quadtrees通常用于递归地将二维空间细分为4个象限或区域。QuadTree Attention以粗到细的方式计算注意力。根据粗级的结果,在细级快速跳过不相关的图像区域。这种设计在保持高效率的同时,减少了信息损失。

与常规Transformer一样,首先将和线性投影到query、key和value token上。为了方便快速的注意力计算,本文通过下采样特征映射构造L-level金字塔用于query Q、key K和value V token。

  • 对于query和key token,使用平均池层;
  • 对于value token,如果是交叉注意力任务则使用平均池化,如果时Self-Attention任务,则使用stride为2的Conv-BN-ReLU。

如图1所示,在计算了粗粒度的注意力分数后,对于每个query token,选择注意力分数最高的top-K个key token。在细粒度上,query sub token只需要用那些对应于粗粒度上所选K个key token之一的key sub token来计算。这个过程不断重复,直到达到最好的水平。在计算了注意力分数之后,在所有粒度上聚合信息,这里设计了2个架构,称为QuadTree-AQuadTree-B

1、QuadTree-A

考虑到最佳级别的第个query token ,需要从所有key token计算其收到的消息。该设计通过收集不同金字塔层次的部分信息来组装完整的信息。具体地说,

image.png

其中,表示在level-l计算的partial messages。这个partial messages 从区域内的token在level-l聚集信息。通过这种方式,来对自较少相关区域的信息进行粗粒度计算,而对来自高度相关区域的信息以精细粒度计算。

image.png

图2

该方案如图2(b)所示,messages 是由不同图像区域不同颜色的3个partial messages生成的,共同覆盖整个图像空间。绿色区域表示最相关的区域,在最精细的level上评价和计算,而红色区域是最不相关的区域,在最粗的level上进行评价和计算。

区域可以定义为,其中图像区域对应于的top-K token。区域如图2(c)。所示区域覆盖了整个图像。

partial messages的计算如下:

其中,是在level-l的query和key token之间的注意力得分。图2(a)显示了与相同颜色计算时涉及的query和key token。注意力分数被递归地计算出来,

这里,是对应的 parent query和key token和的得分。根据公式1在同一parent query token的2×2 token中评估tentative attention得分。对于QuadTree-A,使用平均池化层对所有query、key和value token进行下采样。

2、QuadTree-B

QuadTree-A中从所有层次上递归计算的注意力分数,这使得在更精细的层次上的分数变小,并减少了精细图像特征的贡献。此外,精细水平的得分也在很大程度上受到粗水平的不准确性的影响。因此,设计了一个不同的方案,称为QuadTree-B来解决这个问题。具体来说,计算作为来自不同level的partial messages的加权平均值,

其中是一个学习得到的权重。如图2(c)所示,这里的partial messages相互重叠,计算结果为:

其中,Attention是attention message的计算,如式1。在这里,和是通过在区域内叠加所有的key和value而形成的矩阵。

QuadTree-A和QuadTree-B都只涉及稀疏注意力评价。因此,该方法大大降低了计算复杂度。QuadTree Attention的计算复杂度与Token的数量是线性的。

3、Multiscale position encoding

注意力的计算对token来说是排列不变的,因此会丢失位置信息。为了解决这个问题,作者在每个层次上采用局部增强的位置编码(LePE) 来设计一个多尺度的位置编码。具体来说,对于level-l,对value token 应用非共享深度卷积层来编码位置信息。

3.3 与其他注意力机制的对比

为了与其他注意力机制进行公平的比较,作者在相同的backbone和训练设置下测试了这些注意力机制。

image.png

表5

具体来说,将PVTv2-Bb中原有的注意力模块替换为Swin Transformer和Focal Transformer中使用的注意力方法。为了更公平的比较,采用与PVTv2、Swin和Focal Transformer相同的位置编码LePE。如表5所示,QuadTree Attention在分类任务和检测任务中都比Swin和PVTv2获得了更好的性能。

与Focal Attention相比,QuadTree Attention在目标检测上的结果提高了1.0,这可能是因为QuadTree Attention总是能够覆盖整个图像,而Focal Attention在第一阶段只覆盖了图像的1/6。

image.png

图5

对于Cross Attention任务,本文提供了可视化的注意力分数,如附录e中的图5所示。QuadTree Attention可以注意到比PVT和Linear attention更多的相关区域。

相关文章
|
机器学习/深度学习 编解码 自然语言处理
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
Transformer 结构是 Google 在 2017 年为解决机器翻译任务(例如英文翻译为中文)而提出,从题目中可以看出主要是靠 Attention 注意力机制,其最大特点是抛弃了传统的 CNN 和 RNN,整个网络结构完全是由 Attention 机制组成。为此需要先解释何为注意力机制,然后再分析模型结构。
849 0
Vision Transformer 必读系列之图像分类综述(二): Attention-based(上)
|
7月前
|
机器学习/深度学习 人工智能 计算机视觉
AIGC基础模型——Vision Transformer (ViT)
【1月更文挑战第12天】AIGC基础模型——Vision Transformer (ViT)
296 6
AIGC基础模型——Vision Transformer (ViT)
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
[transformer]论文实现:Attention Is All You Need(上)
[transformer]论文实现:Attention Is All You Need(上)
56 2
|
7月前
|
机器学习/深度学习 并行计算 数据可视化
[transformer]论文实现:Attention Is All You Need(下)
[transformer]论文实现:Attention Is All You Need(下)
81 2
|
计算机视觉
论文阅读笔记 | Transformer系列——Transformer in Transformer
论文阅读笔记 | Transformer系列——Transformer in Transformer
313 0
论文阅读笔记 | Transformer系列——Transformer in Transformer
|
机器学习/深度学习 编解码 自然语言处理
论文阅读笔记 | Transformer系列——Swin Transformer
论文阅读笔记 | Transformer系列——Swin Transformer
1248 0
论文阅读笔记 | Transformer系列——Swin Transformer
|
机器学习/深度学习 并行计算 PyTorch
Swin Transformer实战:使用 Swin Transformer实现图像分类
目标检测刷到58.7 AP! 实例分割刷到51.1 Mask AP! 语义分割在ADE20K上刷到53.5 mIoU! 今年,微软亚洲研究院的Swin Transformer又开启了吊打CNN的模式,在速度和精度上都有很大的提高。这篇文章带你实现Swin Transformer图像分类。
9944 0
Swin Transformer实战:使用 Swin Transformer实现图像分类
【vision transformer】DETR原理及代码详解(二)
【vision transformer】DETR原理及代码详解
106 0
|
SQL API
【vision transformer】DETR原理及代码详解(四)
【vision transformer】DETR原理及代码详解
572 0
|
机器学习/深度学习 编解码
Vision Transformer(VIT)原理总结
Vision Transformer(VIT)原理总结
451 0