【无人机三维路径规划】基于人工蜂群算法实现无人机三维路径规划含Matlab代码

简介: 【无人机三维路径规划】基于人工蜂群算法实现无人机三维路径规划含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着无人机可执行任务的多样化,航迹规划成为其顺利完成任务的基本前提。针对该问题,提出了基于人工蜂群算法的无人机航迹规划方法。运用等效地形模拟方法,将作战区域中的敌方威胁、地形障碍等效为山峰,构建了无人机航迹规划的场景。以此为基础,采用抽象人工蜂群,对起始点和终点已知的无人机航迹进行规划,规划出的航迹安全地避开了威胁,长度较短,且平均耗时较小。仿真结果验证了该算法的有效性。

1.1 航迹规划问题的描述

无人机航迹规划问题的一般描述为:在给定的存在火力威胁和地形障碍等约束的作战环境中,为无人机从起始点到目标点求解一条可行航迹,该航迹不仅要避开障碍物,确保自身的安全,而且需要满足无人机自身的性能约束。此外,该航迹在某种性能指标的度量下需要达到最优,以保证所付出的代价最小。因此,从本质上讲,无人机航迹规划属于一种寻优问题。无人机航迹规划问题的约束条件可分为两类,一种是复杂作战环境约束,主要有:敌方火力威胁、地形障碍;另一种是无人机自身性能约束,主要有:最大水平转弯角、最大爬升/俯冲角、最小航迹段长度、最长飞行距离和最低飞行高度。该问题的目标函数为无人机的航迹长度达到最短。

1.2 航迹规划问题的模型构建

无人机在复杂作战环境中执行各种任务时,可能会面临敌方火力的威胁,如地空导弹、防空火炮等。目前雷达依然是对目标进行远距离探测、跟踪的主要设备,敌方的防空火力威胁几乎必须依靠雷达才能发挥其威力,故可将敌方的各种威胁简化为雷达威胁区域。无人机在作战区域中遇到的地形障碍,同样可以视为禁飞区域。威胁等效地形模拟方法,是将复杂环境中的威胁与障碍等效处理成山峰地形,已在多个文献中得到应用。它通过把敌方威胁处理成特殊的地形,其位置和作用范围叠加到数字地图上,威胁的作用就等同于抬高该作用范围的地形。经过这样处理后,无人机飞行区域内已知的地形障碍和敌方威胁融合成了综合的地形信息,而且把敌方威胁回避等效为地形回避进行处理,使航迹规划问题得到大大简化。根据该等效方法,本文对作战环境中的敌方威胁和地形障碍进行建模,可得威胁等效地形数学模型:

image.gif编辑

⛄ 部分代码

function plotFigure(startPos,goalPos,X,Y,Z, GlobalBest)


% 画起点和终点

scatter3(startPos(1), startPos(2), startPos(3),100,'bs','MarkerFaceColor','y')

hold on

scatter3(goalPos(1), goalPos(2), goalPos(3),100,'kp','MarkerFaceColor','y')


% 画山峰曲面

surf(X,Y,Z)      % 画曲面图

shading flat     % 各小曲面之间不要网格


% 画路径

path = GlobalBest.path;

pos = GlobalBest.pos;

scatter3(pos.x, pos.y, pos.z, 'go');

plot3(path(:,1), path(:,2),path(:,3), 'r','LineWidth',2);


hold off

grid on


⛄ 运行结果

⛄ 参考文献

[1] 张洛兵, 徐流沙, 吴梅. 基于改进人工蜂群算法的无人机实时航迹规划[J]. 飞行力学, 2015(1):6.

[2] 王庆海, 刘广瑞, 郭珂甫,等. 基于改进人工蜂群算法的无人机航迹规划研究[J]. 机床与液压, 2017, 45(21):5.

[3] 来佳音, 赵泳成. 基于改进蚁群算法的无人机三维路径规划研究[J]. 信息记录材料, 2020.

[4] 罗文平, 刘维勤, 王红旭,等. 基于人工蜂群算法和有限元强度计算的集装箱船剖面结构优化[J]. 中国舰船研究, 2023, 18(2):160-167, 217.

[5] 肖振宇, 杨福廷, 董航. 基于人工蜂群算法的多无人机三维编队重构方法:, CN109669475A[P]. 2019.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2月前
|
存储 数据可视化 数据挖掘
使用Matlab绘制简单的二维与三维图形
【10月更文挑战第3天】本文详细介绍了如何在 Matlab 中绘制简单的二维和三维图形,包括曲线图、柱状图、散点图、网格图、表面图、等高线图、多边形填充图、切片图及矢量场等。文章提供了丰富的代码示例,如使用 `plot`、`bar`、`scatter`、`plot3`、`mesh`、`surf`、`contour` 等函数绘制不同类型图形的方法,并介绍了 `rotate3d`、`comet3` 和 `movie` 等工具实现图形的交互和动画效果。通过这些示例,读者可以轻松掌握 Matlab 的绘图技巧,并应用于数据可视化和分析中。
|
1月前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
68 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
132 0
|
2月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
142 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
算法
基于kalman滤波的UAV三维轨迹跟踪算法matlab仿真
本文介绍了一种使用卡尔曼滤波(Kalman Filter)对无人飞行器(UAV)在三维空间中的运动轨迹进行预测和估计的方法。该方法通过状态预测和观测更新两个关键步骤,实时估计UAV的位置和速度,进而生成三维轨迹。在MATLAB 2022a环境下验证了算法的有效性(参见附图)。核心程序实现了状态估计和误差协方差矩阵的更新,并通过调整参数优化滤波效果。该算法有助于提高轨迹跟踪精度和稳定性,适用于多种应用场景,例如航拍和物流运输等领域。
362 12
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于强化学习的路径规划matlab仿真,对比QLearning和SARSA
本仿真展示了使用MATLAB 2022a实现的Q-Learning路径规划算法。通过与环境交互,智能体学习从起点至终点的最佳路径。Q-Learning采用off-policy学习方式,直接学习最优策略;而SARSA为on-policy方法,依据当前策略选择动作。仿真结果显示智能体逐步优化路径并减少步数,最终实现高效导航。核心代码片段实现了Q表更新、奖励计算及路径可视化等功能。
97 0
|
7月前
|
机器学习/深度学习 算法 安全
m基于Qlearning强化学习工具箱的网格地图路径规划和避障matlab仿真
MATLAB 2022a中实现了Q-Learning算法的仿真,展示了一种在动态环境中进行路线规划和避障的策略。Q-Learning是强化学习的无模型方法,通过学习动作价值函数Q(s,a)来优化智能体的行为。在路线问题中,状态表示智能体位置,动作包括移动方向。通过正负奖励机制,智能体学会避开障碍物并趋向目标。MATLAB代码创建了Q表,设置了学习率和ε-贪心策略,并训练智能体直至达到特定平均奖励阈值。
119 15