《医保行业容灾演练云上技术白皮书》——第四章 医保云容灾演练方案——4.2 容灾演练改造——4.2.3 应用侧网络改造

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 《医保行业容灾演练云上技术白皮书》——第四章 医保云容灾演练方案——4.2 容灾演练改造——4.2.3 应用侧网络改造

4.2.3 应用侧网络改造


4.2.3.1 ECS访问互联网/政务外网


ECS访问互联网/政务网API场景

1)容灾场景,需同时申请AB中心ECS和EIP,分别绑定,且在A、B中心的出口开通安全策略访问互联网。

2)也可以使用NAT产品,NAT产品同时绑定有AB中心的EIP,对有需要的ECS开通SNAT。

image.png


4.2.3.2 从互联网/政务外网/医保专网访问云内业务


1)互联网/政务外网访问云上ECS,ECS需要负载均衡的,ECS前端申请SLB,SLB绑定EIP。

2)医保专网访问云上ECS,ECS需要负载均衡的,ECS前端申请SLB。

image.png


相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
24 6
|
12天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
37 2
|
2天前
|
数据采集 监控 数据可视化
Fortran 在单位网络监控软件数据处理中的应用
在数字化办公环境中,Fortran 语言凭借其高效性和强大的数值计算能力,在单位网络监控软件的数据处理中展现出独特优势。本文介绍了 Fortran 在数据采集、预处理和分析可视化三个阶段的应用,展示了其在保障网络安全稳定运行和有效管理方面的价值。
26 10
|
4天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
21 4
|
5天前
|
机器学习/深度学习 存储 运维
图神经网络在复杂系统中的应用
图神经网络(Graph Neural Networks, GNNs)是一类专门处理图结构数据的深度学习模型,近年来在复杂系统的研究和应用中展现了强大的潜力。复杂系统通常涉及多个相互关联的组件,其行为和特性难以通过传统方法进行建模和分析。
23 3
|
9天前
|
缓存 监控 前端开发
优化网络应用的性能
【10月更文挑战第21天】优化网络应用的性能
10 2
|
9天前
|
监控 安全 关系型数据库
如何设计高效网络应用?
【10月更文挑战第21天】如何设计高效网络应用?
11 2
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
10天前
|
数据中心
|
4天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。