「物联网架构」Apache-Kafka:物联网数据平台的基石

简介: 「物联网架构」Apache-Kafka:物联网数据平台的基石


当谈到物联网(IoT),许多开发者从微控制器、片上系统板、单板计算机、传感器和各种其他电子元件来思考。而设备无疑是物联网的基础,连接的解决方案的核心价值在于这些设备产生的数据。

设备层仅仅是底层数据平台的冰山一角,而底层数据平台则是水面下的重担。强大的物联网数据平台的关键支柱之一是Apache Kafka,它是一种开源软件,旨在处理大量的数据摄取。它充当数据中心中由Apache storm、Apache spark和Apache hadoop集群提供支持的数据处理管道的网关。

如果你是一个将物联网作为职业选择的开发者,那么现在是你开始投资Apache kafka的时候了。本文探讨了Apache kafka在部署可伸缩物联网解决方案中所扮演的角色。

Kafka:传感器数据的高性能摄取层

物联网设备包括能够生成多个数据点的各种传感器,这些数据点以高频率采集。一个简单的恒温器每分钟可以产生几字节的数据,而一辆连接的汽车或风力涡轮机在几秒钟内就可以产生千兆字节的数据。这些海量数据集被摄取到数据处理管道中,用于存储、转换、处理、查询和分析。

每个数据集由多个表示特定度量的数据点组成。例如,连接的暖风、通风和空调(HVAC)系统将报告环境温度、所需温度、湿度、空气质量、鼓风机转速、负荷和能耗指标。

在一个大型购物中心,这些数据点经常从数百个hvac收集。由于这些设备的功能可能不够强大,无法运行完整的TCP网络堆栈,因此它们使用诸如Z-Wave和ZigBee之类的协议将数据发送到能够聚合数据点并将其摄取到系统中的中央网关。


网关将数据集推送到Apache-Kafka集群,其中的数据采用多条路径。需要实时监控的数据点经过热路径。在我们的HVAC场景中,实时跟踪温度、湿度和空气质量等指标以采取纠正措施非常重要。这些数据点可以通过Apache storm和Apache spark集群进行近实时处理。

负载和功耗等指标在一段时间内收集后进行分析。通过批处理过程收集和分析的这些数据点通常采用数据处理管道的冷通道。MapReduce作业可以在Hadoop集群中运行,用于分析hvac的能效。

不管数据点采用什么路径,它们都需要被摄取到系统中。apachekafka充当处理大量数据集的高性能数据摄取层。负责热路径和冷路径分析的数据处理管道组件成为apachekafka的订户。

Kafka vs.MQTT

apachekafka不是MQTT的替代品,MQTT是一种通常用于机器到机器(M2M)通信的消息代理。卡夫卡的设计目标与MQTT有很大不同。

在物联网解决方案中,设备可分为传感器和执行器。传感器生成数据点,而执行器是可以通过命令控制的机械部件。例如,房间中的环境照明可用于调整LED灯泡的亮度。在这种情况下,光传感器需要与LED通信,这是M2M通信的一个例子。MQTT是为传感器网络和M2M优化的协议。

由于Kafka不使用HTTP进行接收,所以它提供了更好的性能和规模。

由于MQTT是为低功耗设备设计的,它无法处理海量数据集的摄取。另一方面,Apache kafka可以处理高速数据摄取,但不能处理M2M。

可扩展的物联网解决方案使用MQTT作为显式设备通信,同时依赖Apache Kafka来接收传感器数据。也可以将Kafka和MQTT桥接起来,以便摄取和M2M。但是建议将设备或网关配置为Kafka生产者,同时仍然参与由MQTT代理管理的M2M网络,从而使它们保持分离。

Kafka与HTTP/REST

apachekafka公开了一个基于二进制协议的TCP端口。推送数据的客户机启动套接字连接,然后写入一系列请求消息并读回相应的响应消息。此协议不需要为每个连接或断开连接进行握手。

由于Kafka不使用HTTP进行接收,所以它提供了更好的性能和规模。客户机可以连接到集群的一个实例来接收数据。这种体系结构与原始TCP套接字相结合提供了最大的可伸缩性和吞吐量。

虽然使用HTTP代理与Kafka集群通信可能很诱人,但建议解决方案使用本机客户机。由于Kafka是用Java编写的,所以本机Java客户机库提供了最好的性能。社区已经为Go、Python甚至甚至构建了优化的客户端库节点.js. Shopify还为Kafka开发了一个名为Sarama的开源Go库。Rackspace的Mailgun团队已经构建了Kafka Pixy,一个Kafka的开源HTTP代理。Python、C#、Ruby和其他语言有多个库。

大多数物联网网关功能强大,足以运行Java、Go或Python。为了获得最佳性能和吞吐量,建议使用本机为Kafka设计的客户端库。

Kafka入门

apache kafka是用Java开发的,它的部署由apache zookeeper管理。任何能够运行JVM的操作系统都可以用来部署Kafka集群。为了测试水,你可以在Docker运行卡夫卡。

如果您不想处理基础设施,可以从云中的托管Kafka服务开始。IBM Bluemix有一个基于Kafka的完全管理的基于云的消息服务MessageHub。Cloud Karafka是公共云中的另一个流式平台,专为Apache Kafka工作负载而设计。Aiven.io提供hosted Kafka以及InfloxDB、Grafana和Elasticsearch。如果你是一个Salesforce.com网站或者Heroku开发者,你可以在Heroku上利用Kafka。

Apache卡夫卡是许多大数据部署的基础。在本系列的后续文章中,我将介绍Kafka的关键概念、体系结构和术语

相关文章
|
3月前
|
消息中间件 Java Kafka
Java 事件驱动架构设计实战与 Kafka 生态系统组件实操全流程指南
本指南详解Java事件驱动架构与Kafka生态实操,涵盖环境搭建、事件模型定义、生产者与消费者实现、事件测试及高级特性,助你快速构建高可扩展分布式系统。
235 7
|
5月前
|
存储 SQL 分布式计算
19章构建企业级大数据平台:从架构设计到数据治理的完整链路
开源社区: 贡献者路径:从提交Issue到成为Committer 会议演讲:通过DataWorks Summit提升影响力 标准制定: 白皮书撰写:通过DAMA数据治理框架认证 专利布局:通过架构设计专利构建技术壁垒
|
2月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
6月前
|
人工智能 Cloud Native 容灾
深圳农商银行三代核心系统全面投产 以云原生架构筑牢数字化转型基石
深圳农商银行完成第三代核心系统全面上云,日均交易超3000万笔,峰值处理效率提升2倍以上。扎根深圳70余年,与阿里云共建“两地三中心”分布式云平台,实现高可用体系及全栈护航。此次云原生转型为行业提供可复制样本,未来将深化云计算与AI合作,推动普惠金融服务升级。
496 17
|
监控 网络协议 Nacos
Nacos:构建微服务架构的基石
Nacos:构建微服务架构的基石
544 2
|
6月前
|
消息中间件 数据可视化 Kafka
docker arm架构部署kafka要点
本内容介绍了基于 Docker 的容器化解决方案,包含以下部分: 1. **Docker 容器管理**:通过 Portainer 可视化管理工具实现对主节点和代理节点的统一管理。 2. **Kafka 可视化工具**:部署 Kafka-UI 以图形化方式监控和管理 Kafka 集群,支持动态配置功能, 3. **Kafka 安装与配置**:基于 Bitnami Kafka 镜像,提供完整的 Kafka 集群配置示例,涵盖 KRaft 模式、性能调优参数及数据持久化设置,适用于高可用生产环境。 以上方案适合 ARM64 架构,为用户提供了一站式的容器化管理和消息队列解决方案。
575 10
|
5月前
|
消息中间件 存储 大数据
阿里云消息队列 Kafka 架构及典型应用场景
阿里云消息队列 Kafka 是一款基于 Apache Kafka 的分布式消息中间件,支持消息发布与订阅模型,满足微服务解耦、大数据处理及实时流数据分析需求。其通过存算分离架构优化成本与性能,提供基础版、标准版和专业版三种 Serverless 版本,分别适用于不同业务场景,最高 SLA 达 99.99%。阿里云 Kafka 还具备弹性扩容、多可用区部署、冷热数据缓存隔离等特性,并支持与 Flink、MaxCompute 等生态工具无缝集成,广泛应用于用户行为分析、数据入库等场景,显著提升数据处理效率与实时性。
|
9月前
|
机器学习/深度学习 缓存 自然语言处理
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
DeepSeekMoE是一种创新的大规模语言模型架构,融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm归一化。通过专家共享、动态路由和潜在变量缓存技术,DeepSeekMoE在保持性能的同时,将计算开销降低了40%,显著提升了训练和推理效率。该模型在语言建模、机器翻译和长文本处理等任务中表现出色,具备广泛的应用前景,特别是在计算资源受限的场景下。
1216 29
DeepSeek背后的技术基石:DeepSeekMoE基于专家混合系统的大规模语言模型架构
|
边缘计算 安全 物联网
揭秘边缘计算:未来物联网的基石
揭秘边缘计算:未来物联网的基石
664 93

相关产品

  • 物联网平台