α-IoU | 再助YOLOv5登上巅峰,造就IoU Loss大一统(二)

简介: α-IoU | 再助YOLOv5登上巅峰,造就IoU Loss大一统(二)

4实验


4.1 结果与分析

首先验证了α-IoU损失在两个数据集上训练基于Anchor和Anchor-Free模型的有效性。

作者选择YOLOv5s(即YOLOv5小)和YOLOv5x(即YOLOv5超大)作为单级基于Anchor的模型,而DETR (ResNet-50)作为Anchor-Free模型。根据公式(4),α-IoU损失(即αα)均由现有Baseline推广。

从表1可以看出,在mAP和mAP75:95的多个模型和数据集上,α-IoU损失一致超过现有损失,特别是在高bbox回归精度mAP75:95的情况下。α-IoU损失在高精度水平上的优势更明显,在AP95时相对改善可达60%以上。

有趣的是,α-IoU损失倾向于更有利于轻量化模型(例如,YOLOv5s, 7.3M参数和17 GFLOPs),而不是大模型(例如,YOLOv5x, 87.7M参数和218.8 GFLOPs)。这表明,当在计算资源有限的场景中训练轻模型时,如移动设备、自动驾驶车辆和机器人,α-IoU损失更具优势。

将α-IoU与一组现有的基于IoU的损失进行比较,以训练一个流行的基于Backbone的两阶段模型,Faster R-CNN (ResNet-50-FPN)。在表2中,MS COCO的结果表明,在mAP和mAP75:95方面,与现有基线相比,α-IoU损失具有相当的竞争力。需要注意的是,Autoloss 同时搜索分类损失和定位损失,因此需要花费大量的搜索时间。相比之下,α-IoU损失只需要对定位损失进行简单的修改,就可以赢得Autoloss,而不会造成任何额外的计算开销。

4.2 对噪声BBox的鲁棒性

如表3所示,在这些噪声场景下,α-IoU显著改善了Baseline损失(即和)。从AP50到AP95获得了越来越多的相对改善,累积到mAP75:95中更显著的改善。

请注意,α-IoU损失在所有噪声场景下也优于AP50的Baseline,当Box是干净的时并不总是这样(表1)。此外,α-IoU损失在更严重的噪声中明显更稳健。例如,当噪声率η从0.1增加到0.3时,根据mAP/mAP75:95, α相对于的相对改善从2.97%/10.26%增加到6.39%/24.09%。这些结果证实了α-IoU损失在噪声Box场景中的优势。

4.3 的敏感性

在这里,通过对和 α的一组实验来评估α- iou在不同α值(α)下的性能。图6显示了YOLOv5s在PASCAL VOC上的结果,包括干净和各种噪声box场景。很明显,具有α的α- iou损失在所有情况下都表现得很好,其中α = 3在大多数情况下表现最好。

当α=比;=3、α- iou损失在低ap上的表现往往比Baseline(即α = 1的α- iou)更差,尽管在高ap上的性能获得了更多的改善。在噪声率η = 0/0.1/0.2/0.3时,α = 10时的性能比α = 3时平均下降了5.61%/10.92%/23.88%/31.82%。

更具体地说,它变得比mAP或mAP75:95的Baseline更差。这说明α的选择对α-iou损失至关重要。

建议直接使用α = 3

4.4 可视化结果


5参考


[1].Alpha-IoU:A Family of Power Intersection over Union Losses for Bounding Box Regression

相关文章
|
10月前
|
算法 固态存储 计算机视觉
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
288 0
|
10月前
|
机器学习/深度学习 负载均衡 算法
训练Backbone你还用EMA?ViT训练的大杀器EWA升级来袭
训练Backbone你还用EMA?ViT训练的大杀器EWA升级来袭
293 1
|
10月前
|
算法 数据可视化 图形学
超越GIoU/DIoU/CIoU/EIoU | MPDIoU让YOLOv7/YOLACT双双涨点,速度不减!
超越GIoU/DIoU/CIoU/EIoU | MPDIoU让YOLOv7/YOLACT双双涨点,速度不减!
156 0
|
人工智能 算法
Facebook出手!自适应梯度打败人工调参
Facebook出手!自适应梯度打败人工调参
106 0
|
机器学习/深度学习 算法 固态存储
α-IoU | 再助YOLOv5登上巅峰,造就IoU Loss大一统(一)
α-IoU | 再助YOLOv5登上巅峰,造就IoU Loss大一统(一)
243 0
|
算法 数据可视化 计算机视觉
再战IOU | 总结分析IOU/GIOU/CIOU局限,提出Focal EIOU进一步提升目标检测性能(二)
再战IOU | 总结分析IOU/GIOU/CIOU局限,提出Focal EIOU进一步提升目标检测性能(二)
425 0
|
算法 计算机视觉
再战IOU | 总结分析IOU/GIOU/CIOU局限,提出Focal EIOU进一步提升目标检测性能(一)
再战IOU | 总结分析IOU/GIOU/CIOU局限,提出Focal EIOU进一步提升目标检测性能(一)
340 0
|
机器学习/深度学习 传感器 人工智能
Light-YOLOv5 | SepViT + BiFPN + SIoU成就更轻更快更优秀的 YOLOv5 改进算法
Light-YOLOv5 | SepViT + BiFPN + SIoU成就更轻更快更优秀的 YOLOv5 改进算法
302 0
谷歌、DeepMind新研究:归纳偏置如何影响模型缩放?
谷歌、DeepMind新研究:归纳偏置如何影响模型缩放?
123 0
|
机器学习/深度学习 人工智能 算法
Focal Loss 后继之秀 | LMFLOSS:用于解决不平衡医学图像分类的新型混合损失函数
Focal Loss 后继之秀 | LMFLOSS:用于解决不平衡医学图像分类的新型混合损失函数
436 0