Which of the following architecture has feedback connections?
A. Recurrent Neural network
B. Convolutional Neural Network
C. Restricted Boltzmann Machine
D. None of these
Solution: (A)
Option A is correct.
Q17. What is the sequence of the following tasks in a perceptron?
- Initialize weights of perceptron randomly
- Go to the next batch of dataset
- If the prediction does not match the output, change the weights
- For a sample input, compute an output
A. 1, 2, 3, 4
B. 4, 3, 2, 1
C. 3, 1, 2, 4
D. 1, 4, 3, 2
Solution: (D)
Sequence D is correct.
Q18. Suppose that you have to minimize the cost function by changing the parameters. Which of the following technique could be used for this?
A. Exhaustive Search
B. Random Search
C. Bayesian Optimization
D. Any of these
Solution: (D)
Any of the above mentioned technique can be used to change parameters.
Q19. First Order Gradient descent would not work correctly (i.e. may get stuck) in which of the following graphs?
A.
B.
C.
D. None of these
Solution: (B)
This is a classic example of saddle point problem of gradient descent.
Q20. The below graph shows the accuracy of a trained 3-layer convolutional neural network vs the number of parameters (i.e. number of feature kernels).
The trend suggests that as you increase the width of a neural network, the accuracy increases till a certain threshold value, and then starts decreasing.
What could be the possible reason for this decrease?
A. Even if number of kernels increase, only few of them are used for prediction
B. As the number of kernels increase, the predictive power of neural network decrease
C. As the number of kernels increase, they start to correlate with each other which in turn helps overfitting
D. None of these
Solution: (C)
As mentioned in option C, the possible reason could be kernel correlation.
Q21. Suppose we have one hidden layer neural network as shown above. The hidden layer in this network works as a dimensionality reductor. Now instead of using this hidden layer, we replace it with a dimensionality reduction technique such as PCA.
Would the network that uses a dimensionality reduction technique always give same output as network with hidden layer?
A. Yes
B. No
Solution: (B)
Because PCA works on correlated features, whereas hidden layers work on predictive capacity of features.
Q22. Can a neural network model the function (y=1/x)?
A. Yes
B. No
Solution: (A)
Option A is true, because activation function can be reciprocal function.
Q23. In which neural net architecture, does weight sharing occur?
A. Convolutional neural Network
B. Recurrent Neural Network
C. Fully Connected Neural Network
D. Both A and B
Solution: (D)
Option D is correct.
Q24. Batch Normalization is helpful because
A. It normalizes (changes) all the input before sending it to the next layer
B. It returns back the normalized mean and standard deviation of weights
C. It is a very efficient backpropagation technique
D. None of these
Solution: (A)
To read more about batch normalization, see refer this video
Q25. Instead of trying to achieve absolute zero error, we set a metric called bayes error which is the error we hope to achieve. What could be the reason for using bayes error?
A. Input variables may not contain complete information about the output variable
B. System (that creates input-output mapping) may be stochastic
C. Limited training data
D. All the above
Solution: (D)
In reality achieving accurate prediction is a myth. So we should hope to achieve an “achievable result”.
Q26. The number of neurons in the output layer should match the number of classes (Where the number of classes is greater than 2) in a supervised learning task. True or False?
A. True
B. False
Solution: (B)
It depends on output encoding. If it is one-hot encoding, then its true. But you can have two outputs for four classes, and take the binary values as four classes(00,01,10,11).
Q27. In a neural network, which of the following techniques is used to deal with overfitting?
A. Dropout
B. Regularization
C. Batch Normalization
D. All of these
Solution: (D)
All of the techniques can be used to deal with overfitting.
Q28. Y = ax^2 + bx + c (polynomial equation of degree 2)
Can this equation be represented by a neural network of single hidden layer with linear threshold?
A. Yes
B. No
Solution: (B)
The answer is no because having a linear threshold restricts your neural network and in simple terms, makes it a consequential linear transformation function.
Q29. What is a dead unit in a neural network?
A. A unit which doesn’t update during training by any of its neighbour
B. A unit which does not respond completely to any of the training patterns
C. The unit which produces the biggest sum-squared error
D. None of these
Solution: (A)
Option A is correct.
Q30. Which of the following statement is the best description of early stopping?
A. Train the network until a local minimum in the error function is reached
B. Simulate the network on a test dataset after every epoch of training. Stop training when the generalization error starts to increase
C. Add a momentum term to the weight update in the Generalized Delta Rule, so that training converges more quickly
D. A faster version of backpropagation, such as the `Quickprop’ algorithm
Solution: (B)
Option B is correct.
Q31. What if we use a learning rate that’s too large?
A. Network will converge
B. Network will not converge
C. Can’t Say
Solution: B
Option B is correct because the error rate would become erratic and explode.
Q32. The network shown in Figure 1 is trained to recognize the characters H and T as shown below:
What would be the output of the network?
A
B
C
D: Could be A or B depending on the weights of neural network
Solution: (D)
Without knowing what are the weights and biases of a neural network, we cannot comment on what output it would give.
Q33. Suppose a convolutional neural network is trained on ImageNet dataset (Object recognition dataset). This trained model is then given a completely white image as an input.The output probabilities for this input would be equal for all classes. True or False?
A. True
B. False
Solution: (B)
There would be some neurons which are do not activate for white pixels as input. So the classes wont be equal.
Q34. When pooling layer is added in a convolutional neural network, translation in-variance is preserved. True or False?
A. True
B. False
Solution: (A)
Translation invariance is induced when you use pooling.
Q35. Which gradient technique is more advantageous when the data is too big to handle in RAM simultaneously?
A. Full Batch Gradient Descent
B. Stochastic Gradient Descent
Solution: (B)
Option B is correct.
Q36. The graph represents gradient flow of a four-hidden layer neural network which is trained using sigmoid activation function per epoch of training. The neural network suffers with the vanishing gradient problem.
Which of the following statements is true?
A. Hidden layer 1 corresponds to D, Hidden layer 2 corresponds to C, Hidden layer 3 corresponds to B and Hidden layer 4 corresponds to A
B. Hidden layer 1 corresponds to A, Hidden layer 2 corresponds to B, Hidden layer 3 corresponds to C and Hidden layer 4 corresponds to D
Solution: (A)
This is a description of a vanishing gradient problem. As the backprop algorithm goes to starting layers, learning decreases.
Q37. For a classification task, instead of random weight initializations in a neural network, we set all the weights to zero. Which of the following statements is true?
A. There will not be any problem and the neural network will train properly
B. The neural network will train but all the neurons will end up recognizing the same thing
C. The neural network will not train as there is no net gradient change
D. None of these
Solution: (B)
Option B is correct.
Q38. There is a plateau at the start. This is happening because the neural network gets stuck at local minima before going on to global minima.
To avoid this, which of the following strategy should work?
A. Increase the number of parameters, as the network would not get stuck at local minima
B. Decrease the learning rate by 10 times at the start and then use momentum
C. Jitter the learning rate, i.e. change the learning rate for a few epochs
D. None of these
Solution: (C)
Option C can be used to take a neural network out of local minima in which it is stuck.
Q39. For an image recognition problem (recognizing a cat in a photo), which architecture of neural network would be better suited to solve the problem?
A. Multi Layer Perceptron
B. Convolutional Neural Network
C. Recurrent Neural network
D. Perceptron
Solution: (B)
Convolutional Neural Network would be better suited for image related problems because of its inherent nature for taking into account changes in nearby locations of an image
Q40.Suppose while training, you encounter this issue. The error suddenly increases after a couple of iterations.
You determine that there must a problem with the data. You plot the data and find the insight that, original data is somewhat skewed and that may be causing the problem.
What will you do to deal with this challenge?
A. Normalize
B. Apply PCA and then Normalize
C. Take Log Transform of the data
D. None of these
Solution: (B)
First you would remove the correlations of the data and then zero center it.
Q41. Which of the following is a decision boundary of Neural Network?
A) B
B) A
C) D
D) C
E) All of these
Solution: (E)
A neural network is said to be a universal function approximator, so it can theoretically represent any decision boundary.
Q42. In the graph below, we observe that the error has many “ups and downs”
Should we be worried?
A. Yes, because this means there is a problem with the learning rate of neural network.
B. No, as long as there is a cumulative decrease in both training and validation error, we don’t need to worry.
Solution: (B)
Option B is correct. In order to decrease these “ups and downs” try to increase the batch size.
Q43. What are the factors to select the depth of neural network?
- Type of neural network (eg. MLP, CNN etc)
- Input data
- Computation power, i.e. Hardware capabilities and software capabilities
- Learning Rate
- The output function to map
A. 1, 2, 4, 5
B. 2, 3, 4, 5
C. 1, 3, 4, 5
D. All of these
Solution: (D)
All of the above factors are important to select the depth of neural network
Q44. Consider the scenario. The problem you are trying to solve has a small amount of data. Fortunately, you have a pre-trained neural network that was trained on a similar problem. Which of the following methodologies would you choose to make use of this pre-trained network?
A. Re-train the model for the new dataset
B. Assess on every layer how the model performs and only select a few of them
C. Fine tune the last couple of layers only
D. Freeze all the layers except the last, re-train the last layer
Solution: (D)
If the dataset is mostly similar, the best method would be to train only the last layer, as previous all layers work as feature extractors.
Q45. Increase in size of a convolutional kernel would necessarily increase the performance of a convolutional network.
A. True
B. False
Solution: (B)
Increasing kernel size would not necessarily increase performance. This depends heavily on the dataset.
结束笔记
我希望你喜欢参加测试,你发现解决方案有帮助。测试集中在深度学习的概念知识。
我们试图通过这篇文章清除所有的疑问,但如果我们错过了一些事情,那么让我在下面的评论中知道。如果您有任何建议或改进,您认为我们应该在下一个技能测试中,通过在评论部分放弃您的反馈来告知我们。