【人工智能】45测试深度学习基础知识的数据科学家的问题(以及解决方案)(下)

简介: 【人工智能】45测试深度学习基础知识的数据科学家的问题(以及解决方案

Which of the following architecture has feedback connections?

A. Recurrent Neural network

B. Convolutional Neural Network

C. Restricted Boltzmann Machine

D. None of these

Solution: (A)

Option A is correct.

Q17. What is the sequence of the following tasks in a perceptron?

  1. Initialize weights of perceptron randomly
  2. Go to the next batch of dataset
  3. If the prediction does not match the output, change the weights
  4. For a sample input, compute an output

A. 1, 2, 3, 4

B. 4, 3, 2, 1

C. 3, 1, 2, 4

D. 1, 4, 3, 2

Solution: (D)

Sequence D is correct.

Q18. Suppose that you have to minimize the cost function by changing the parameters. Which of the following technique could be used for this?

A. Exhaustive Search

B. Random Search

C. Bayesian Optimization

D. Any of these

Solution: (D)

Any of the above mentioned technique can be used to change parameters.

Q19. First Order Gradient descent would not work correctly (i.e. may get stuck) in which of the following graphs?

A.

B.

C.

D. None of these

Solution: (B)

This is a classic example of saddle point problem of gradient descent.

Q20. The below graph shows the accuracy of a trained 3-layer convolutional neural network vs the number of parameters (i.e. number of feature kernels).

The trend suggests that as you increase the width of a neural network, the accuracy increases till a certain threshold value, and then starts decreasing.

What could be the possible reason for this decrease?

A. Even if number of kernels increase, only few of them are used for prediction

B. As the number of kernels increase, the predictive power of neural network decrease

C. As the number of kernels increase, they start to correlate with each other which in turn helps overfitting

D. None of these

Solution: (C)

As mentioned in option C, the possible reason could be kernel correlation.

Q21. Suppose we have one hidden layer neural network as shown above. The hidden layer in this network works as a dimensionality reductor. Now instead of using this hidden layer, we replace it with a dimensionality reduction technique such as PCA.

Would the network that uses a dimensionality reduction technique always give same output as network with hidden layer?

A. Yes

B. No

Solution: (B)

Because PCA works on correlated features, whereas hidden layers work on predictive capacity of features.

Q22. Can a neural network model the function (y=1/x)?

A. Yes

B. No

Solution: (A)

Option A is true, because activation function can be reciprocal function.

Q23. In which neural net architecture, does weight sharing occur?

A. Convolutional neural Network

B. Recurrent Neural Network

C. Fully Connected Neural Network

D. Both A and B

Solution: (D)

Option D is correct.

Q24. Batch Normalization is helpful because

A. It normalizes (changes) all the input before sending it to the next layer

B. It returns back the normalized mean and standard deviation of weights

C. It is a very efficient backpropagation technique

D. None of these

Solution: (A)

To read more about batch normalization, see refer this video

Q25. Instead of trying to achieve absolute zero error, we set a metric called bayes error which is the error we hope to achieve. What could be the reason for using bayes error?

A. Input variables may not contain complete information about the output variable

B. System (that creates input-output mapping) may be stochastic

C. Limited training data

D. All the above

Solution: (D)

In reality achieving accurate prediction is a myth. So we should hope to achieve an “achievable result”.

Q26. The number of neurons in the output layer should match the number of classes (Where the number of classes is greater than 2) in a supervised learning task. True or False?

A. True

B. False

Solution: (B)

It depends on output encoding. If it is one-hot encoding, then its true. But you can have two outputs for four classes, and take the binary values as four classes(00,01,10,11).

Q27. In a neural network, which of the following techniques is used to deal with overfitting?

A. Dropout

B. Regularization

C. Batch Normalization

D. All of these

Solution: (D)

All of the techniques can be used to deal with overfitting.

Q28. Y = ax^2 + bx + c (polynomial equation of degree 2)

Can this equation be represented by a neural network of single hidden layer with linear threshold?

A. Yes

B. No

Solution: (B)

The answer is no because having a linear threshold restricts your neural network and in simple terms, makes it a consequential linear transformation function.

Q29. What is a dead unit in a neural network?

A. A unit which doesn’t update during training by any of its neighbour

B. A unit which does not respond completely to any of the training patterns

C. The unit which produces the biggest sum-squared error

D. None of these

Solution: (A)

Option A is correct.

Q30. Which of the following statement is the best description of early stopping?

A. Train the network until a local minimum in the error function is reached

B. Simulate the network on a test dataset after every epoch of training. Stop training when the generalization error starts to increase

C. Add a momentum term to the weight update in the Generalized Delta Rule, so that training converges more quickly

D. A faster version of backpropagation, such as the `Quickprop’ algorithm

Solution: (B)

Option B is correct.

Q31. What if we use a learning rate that’s too large?

A. Network will converge

B. Network will not converge

C. Can’t Say

Solution: B

Option B is correct because the error rate would become erratic and explode.

Q32. The network shown in Figure 1 is trained to recognize the characters H and T as shown below:

What would be the output of the network?

A

B

C

D: Could be A or B depending on the weights of neural network

Solution: (D)

Without knowing what are the weights and biases of a neural network, we cannot comment on what output it would give.

Q33. Suppose a convolutional neural network is trained on ImageNet dataset (Object recognition dataset). This trained model is then given a completely white image as an input.The output probabilities for this input would be equal for all classes. True or False?

A. True

B. False

Solution: (B)

There would be some neurons which are do not activate for white pixels as input. So the classes wont be equal.

Q34. When pooling layer is added in a convolutional neural network, translation in-variance is preserved. True or False?

A. True

B. False

Solution: (A)

Translation invariance is induced when you use pooling.

Q35. Which gradient technique is more advantageous when the data is too big to handle in RAM simultaneously?

A. Full Batch Gradient Descent

B. Stochastic Gradient Descent

Solution: (B)

Option B is correct.

Q36. The graph represents gradient flow of a four-hidden layer neural network which is trained using sigmoid activation function per epoch of training. The neural network suffers with the vanishing gradient problem.

Which of the following statements is true?

A. Hidden layer 1 corresponds to D, Hidden layer 2 corresponds to C, Hidden layer 3 corresponds to B and Hidden layer 4 corresponds to A

B. Hidden layer 1 corresponds to A, Hidden layer 2 corresponds to B, Hidden layer 3 corresponds to C and Hidden layer 4 corresponds to D

Solution: (A)

This is a description of a vanishing gradient problem. As the backprop algorithm goes to starting layers, learning decreases.

Q37. For a classification task, instead of random weight initializations in a neural network, we set all the weights to zero. Which of the following statements is true?

A. There will not be any problem and the neural network will train properly

B. The neural network will train but all the neurons will end up recognizing the same thing

C. The neural network will not train as there is no net gradient change

D. None of these

Solution: (B)

Option B is correct.

Q38. There is a plateau at the start. This is happening because the neural network gets stuck at local minima before going on to global minima.

To avoid this, which of the following strategy should work?

A. Increase the number of parameters, as the network would not get stuck at local minima

B. Decrease the learning rate by 10 times at the start and then use momentum

C. Jitter the learning rate, i.e. change the learning rate for a few epochs

D. None of these

Solution: (C)

Option C can be used to take a neural network out of local minima in which it is stuck.

Q39. For an image recognition problem (recognizing a cat in a photo), which architecture of neural network would be better suited to solve the problem?

A. Multi Layer Perceptron

B. Convolutional Neural Network

C. Recurrent Neural network

D. Perceptron

Solution: (B)

Convolutional Neural Network would be better suited for image related problems because of its inherent nature for taking into account changes in nearby locations of an image

Q40.Suppose while training, you encounter this issue. The error suddenly increases after a couple of iterations.

You determine that there must a problem with the data. You plot the data and find the insight that, original data is somewhat skewed and that may be causing the problem.

What will you do to deal with this challenge?

A. Normalize

B. Apply PCA and then Normalize

C. Take Log Transform of the data

D. None of these

Solution: (B)

First you would remove the correlations of the data and then zero center it.

Q41. Which of the following is a decision boundary of Neural Network?

A) B

B) A

C) D

D) C

E) All of these

Solution: (E)

A neural network is said to be a universal function approximator, so it can theoretically represent any decision boundary.

Q42. In the graph below, we observe that the error has many “ups and downs”

Should we be worried?

A. Yes, because this means there is a problem with the learning rate of neural network.

B. No, as long as there is a cumulative decrease in both training and validation error, we don’t need to worry.

Solution: (B)

Option B is correct. In order to decrease these “ups and downs” try to increase the batch size.

Q43. What are the factors to select the depth of neural network?

  1. Type of neural network (eg. MLP, CNN etc)
  2. Input data
  3. Computation power, i.e. Hardware capabilities and software capabilities
  4. Learning Rate
  5. The output function to map

A. 1, 2, 4, 5

B. 2, 3, 4, 5

C. 1, 3, 4, 5

D. All of these

Solution: (D)

All of the above factors are important to select the depth of neural network

Q44. Consider the scenario. The problem you are trying to solve has a small amount of data. Fortunately, you have a pre-trained neural network that was trained on a similar problem. Which of the following methodologies would you choose to make use of this pre-trained network?

A. Re-train the model for the new dataset

B. Assess on every layer how the model performs and only select a few of them

C. Fine tune the last couple of layers only

D. Freeze all the layers except the last, re-train the last layer

Solution: (D)

If the dataset is mostly similar, the best method would be to train only the last layer, as previous all layers work as feature extractors.

Q45. Increase in size of a convolutional kernel would necessarily increase the performance of a convolutional network.

A. True

B. False

Solution: (B)

Increasing kernel size would not necessarily increase performance. This depends heavily on the dataset.

结束笔记

我希望你喜欢参加测试,你发现解决方案有帮助。测试集中在深度学习的概念知识。

我们试图通过这篇文章清除所有的疑问,但如果我们错过了一些事情,那么让我在下面的评论中知道。如果您有任何建议或改进,您认为我们应该在下一个技能测试中,通过在评论部分放弃您的反馈来告知我们。


相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
98 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能:深度学习的奥秘与实践
在本文中,我们将深入浅出地探索深度学习的神秘面纱。从基础概念到实际应用,你将获得一份简明扼要的指南,助你理解并运用这一前沿技术。我们避开复杂的数学公式和冗长的论述,以直观的方式呈现深度学习的核心原理和应用实例。无论你是技术新手还是有经验的开发者,这篇文章都将为你打开一扇通往人工智能新世界的大门。
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
29天前
|
机器学习/深度学习 监控 算法
车辆违停检测:基于计算机视觉与深度学习的自动化解决方案
随着智能交通技术的发展,传统人工交通执法方式已难以满足现代城市需求,尤其是在违法停车监控与处罚方面。本文介绍了一种基于计算机视觉和深度学习的车辆违停检测系统,该系统能自动监测、识别并报警违法停车行为,大幅提高交通管理效率,降低人力成本。通过使用YOLO算法进行车辆检测,结合区域分析判断车辆是否处于禁停区,实现了从车辆识别到违停判定的全流程自动化。此系统不仅提升了交通管理的智能化水平,也为维护城市交通秩序提供了技术支持。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
62 7
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
下一篇
DataWorks