企业运维训练营之数据库原理与实践—数据库DAS简介和备份上云方案—数据上云(上)

简介: 企业运维训练营之数据库原理与实践—数据库DAS简介和备份上云方案—数据上云(上)

二、 数据上云

 

image.png

 

数据传输服务(Data Transmission Service,简称DTS)是阿里云提供的实时数据流服务,支持关系型数据库、非关系型数据库,及OLAP分析型数据库等数据源间的数据交互,集数据同步、迁移、订阅、集成、加工于一体。

 

DTS能够让数据可以更好地流通,从线下流通到云上,在云上不同数据库之间流通。其优势主要在于以下几点:

 

第一,方便快捷。DTS提供可视化管理界面,不需要进行黑屏命令或其他复杂的操作,只需要在界面上进行任务的配置和流程安排,就可以创建订阅或同步任务。

 

第二,丰富多样。DTS支持的源库和目标数据库引擎丰富,支持从关系型到非关系型、从关系型到OLAP等跨引擎之间的数据传输。此外,DTS数据传输方式也十分丰富,包括数据迁移、同步、订阅、集成等方式。

 

第三,高性能。DTS采用阿里云自研的高可用架构、高性能的链路,峰值的传输数据速率可达70MB/S。

 

第四,安全可靠。DTS具有容灾、鉴权、断点续传及数据校验功能,能够保证数据的完整性和一致性。

 

image.png

 

DTS系统架构中,用户可以通过DTS控制台配置迁移、同步或订阅任务,并通过内部调度系统匹配不同的应用。例如,迁移任务需要通过迁移系统完成,同步任务需要通过数据同步系统进行。

 

另外,容灾和监控系统将不断监听任务是否正常。如出现异常,DTS将提供另外的高可用方案来保证其正常运行。

 

系统高可用性是指DTS内部每个模块都存在主备架构来保证系统的高可用性,容灾系统会实时检测每个节点的健康状况,一旦发现某个节点存在异常,会快速切换到其他节点。

 

数据源地址动态适配是指对于数据订阅及同步链路,容灾系统会监测数据源连接地址切换等变更操作,一旦发生了数据源连接地址变更,DTS会自动适配数据源新的连接地址。在数据源变更情况下保证链路稳定性,加强高可用性。

 

 

image.png

 

DTS三大功能指DTS数据迁移、数据同步和数据订阅,不同的功能有不同的应用场景。数据迁移一般用于一次性或大批量数据搬迁场景,能够将数据迁移到目标库内。例如,客户将业务从IDC、机房或线下初始化搬迁到云上时可以使用数据迁移。

 

数据迁移过程包含进行数据迁移的某一时间点及迁移过程中的数据,该时间点之前的所有数据为全量的数据迁移,迁移过程中源端数据库写入的数据即增量数据。DTS支持将增量数据迁移到目标库,以保证目标库和源库数据完整一致。

 

数据迁移过程包括结构迁移、全量数据迁移、增量数据迁移三个阶段。

 

结构迁移。DTS将在目标库中重新创建同源库保持一致的数据结构。异构数据库之间进行迁移时,DTS将会解析源库DDL代码,将代码转换成目标库语法,在目标库中创建新的结构对象。

 

全量数据迁移。DTS会将源库的存量数据全部迁移到目标库。源库保持运行状态且迁移过程中仍有数据更新时,DTS会使用增量数据读取模块来获取全量数据迁移过程中发生的数据更新。

 

增量数据迁移。当全量数据迁移完成后,DTS会检查本地存储的增量数据,并重新格式化,将数据更新到目标数据库。持续到所有进行的数据变更都复制到目标数据库,以保证源库和目标库数据完全一致。

 

image.png

 

数据同步是指将源库数据迁移到目标库,为什么需要数据同步?

 

第一,时效性高。数据同步能够将某一时刻中源端实例的数据变化,在短时间同步到目标库中,该功能在容灾或多活场景下应用广泛。

 

第二,数据变化丰富。数据同步可以完成插入数据、删除数据或数据更新的操作。虽然无法完成类似数据迁移的大批量迁移,但其时效或单个数据准确性较高。

 

数据同步包括同步初始化和数据实时同步两个阶段。初始化是将源端数据加载到目标数据库,数据实时同步是将在进行中的数据变更加载到目标库,来保证源端数据库和目标数据库中数据是一致的。

 

数据同步通过事务日志读取模块和事务日志回放模块来完成。

 

事务日志读取模块在源端实例读取原始数据,经过解析、过滤及标准格式化,最终将数据本地化,该模块会通过数据库协议连接并读取源实例的增量日志。

事务日志回放模块从日志读取模块中请求增量数据,根据用户配置的同步对象进行数据过滤。在保证事务时序和一致性的前提下,将日志同步记录到目标实例,保证两端数据一致。


接下篇:https://developer.aliyun.com/article/new/supportservice?spm=a2c6h.12873639.article-detail.5.512b396cr8HGpf&publish=1224099#/?_k=2bd0ue

相关文章
|
4月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
5月前
|
数据采集 运维 数据可视化
AR 运维系统与 MES、EMA、IoT 系统的融合架构与实践
AR运维系统融合IoT、EMA、MES数据,构建“感知-分析-决策-执行”闭环。通过AR终端实现设备数据可视化,实时呈现温度、工单等信息,提升运维效率与生产可靠性。(238字)
|
6月前
|
存储 运维 安全
运维知识沉淀工具深度解析:从结构设计到落地实践全拆解
运维知识沉淀工具助力团队将零散经验结构化存储,实现问题处理路径标准化、知识复用化。通过标签、模板与自动化调取机制,让每次处理都留下可复用资产,提升团队协同效率与系统稳定性。
|
5月前
|
存储 弹性计算 Cloud Native
云原生数据库的演进与应用实践
随着企业业务扩展,传统数据库难以应对高并发与弹性需求。云原生数据库应运而生,具备计算存储分离、弹性伸缩、高可用等核心特性,广泛应用于电商、金融、物联网等场景。阿里云PolarDB、Lindorm等产品已形成完善生态,助力企业高效处理数据。未来,AI驱动、Serverless与多云兼容将推动其进一步发展。
268 8
|
5月前
|
机器学习/深度学习 人工智能 运维
三重Reward驱动的运维智能体进化:多智能体、上下文工程与强化学习的融合实践
这篇文章系统性地阐述了 AI 原生时代下,面向技术风险领域的智能体系统(DeRisk)的架构设计、核心理念、关键技术演进路径与实践落地案例。
三重Reward驱动的运维智能体进化:多智能体、上下文工程与强化学习的融合实践
|
7月前
|
人工智能 运维 数据挖掘
瑶池数据库Data+AI驱动的全栈智能实践开放日回顾
阿里云瑶池数据库重磅推出“Data+AI能力家族”,包括DTS AI数据准备、Data Agent系列智能体及DMS MCP统一数据访问服务,重构数据与AI协同边界。通过智能化工具链,覆盖数据全生命周期,提升企业数据开发、分析、治理与运维效率,降低技术门槛,激活数据资产价值,助力企业迈向全栈智能新时代。
|
7月前
|
运维 监控 安全
从实践到自动化:现代运维管理的转型与挑战
本文探讨了现代运维管理从传统人工模式向自动化转型的必要性与路径,分析了传统运维的痛点,如效率低、响应慢、依赖经验等问题,并介绍了自动化运维在提升效率、降低成本、增强系统稳定性与安全性方面的优势。结合技术工具与实践案例,文章展示了企业如何通过自动化实现运维升级,推动数字化转型,提升业务竞争力。
|
5月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
383 14
|
6月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
314 0

热门文章

最新文章