哈希表——我欲修仙(功法篇)

简介: 哈希表——我欲修仙(功法篇)

什么是哈希表?


散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。


给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数


总的来说:
 - 哈希表是一种数据结构
 - 哈希表表示了关键码值和记录的映射关 
 - 哈希表可以加快查找速度
 - 任意哈希表,都满足有哈希函数f(key),代入任意key值都可以获取包含该key值的记录在表中的地址

使用哈希表的常用方法


哈希表有多种使用方式,通常我们选择何种方式需要通过以下几点进行分析:


· 计算哈希函数所需时间

· 关键字的长度

· 哈希表的大小

· 关键字的分布情况

· 记录的查找频率


直接寻址法


取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)。若其中H(key)中已经有值了,就往下一个找,直到H(key)中没有值了,就放进去。


数字分析法


分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。


平方取中法


当无法确定关键字中哪几位分布较均匀时,可以先求出关键字的平方值,然后按需要取平方值的中间几位作为哈希地址。这是因为:平方后中间几位和关键字中每一位都相关,故不同关键字会以较高的概率产生不同的哈希地址


折叠法


将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。数位叠加可以有移位叠加和间界叠加两种方法。移位叠加是将分割后的每一部分的最低位对齐,然后相加;间界叠加是从一端向另一端沿分割界来回折叠,然后对齐相加。


随机数法


选择一随机函数,取关键字的随机值作为散列地址,即H(key)=random(key)其中random为随机函数,通常用于关键字长度不等的场合。


除留余数法


取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p≤m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。


哈希碰撞


对不同的关键字可能得到同一散列地址,即k1≠k2,而f(k1)=(k2),这种现象称为冲突(英语:Collision)——我们也称之为哈希碰撞

我们有两种方式来解决这个问题:拉链法和线性探测法


拉链法


将发生碰撞的元素都存进哈希表中,我们通过索引去查找它们的位置,这种方法即拉链法。


1684828251446.png


其实拉链法就是要选择适当的哈希表的大小,这样既不会因为数组空值而浪费大量内存,也不会因为链表太长而在查找上浪费太多时间。


线性探测法


使用线性探测法,一定要保证tableSize大于dataSize。 我们需要依靠哈希表中的空位来解决碰撞问题。


例如冲突的位置有两种元素(a与b),在哈希表中存放a,那么就向下找一个空位放置b。所以要求哈希表可存放的个数一定要大于数据元素个数 ,要不然哈希表上就没有空置的位置来存放冲突的数据了。


1684828271441.png



三种哈希结构


在我们使用哈希表进行解决问题时通常有三种结构可供我们选择:


数组

set(集合)

map(映射)


set


95da58b3c82864a8b9086185d65aa270_acd675bf724647ec845ae6bdcf33b8e7.png


std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。


map


9ae21ef9163e2c60a56d907af5fae1b8_44c18bc5bc684d6aa5f06bdf57f990f4.png


std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。同理,std::map 和std::multimap 的key也是有序的


总结


大多数情况下,使用哈希表和哈希集合的场景都会使用 HashMap 类和 HashSet 类的对象。如果哈希表的键范围有限或者哈希集合的元素范围有限,例如只能是数字或者只能是字母,则可以用数组代替哈希表。虽然从复杂度分析的角度而言,数组和哈希表的时间复杂度和空间复杂度相同,但是在实际运行时,数组的操作时间和占用空间都优于哈希表。

目录
相关文章
|
PyTorch Go 算法框架/工具
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
【YOLOv8 注意事项】 1. YOLOv8 的官方仓库和代码已上线,文档教程网址也刚刚更新。 2. YOLOv8 代码集成在 ultralytics 项目中,目前看不会再单独创建叫做 YOLOv8 的项目。 3. YOLOv8 即将有论文了!要知道 YOLOv5 自从 2020 年发布以来,一直是没有论文的。而 YOLOv8(YOLOv5团队)这次首次承认将先发布 arXiv 版本的论文(目前还在火速撰写中)。
2194 0
YOLOv8代码上线,官方宣布将发布论文,附精度速度初探和对比总结
|
应用服务中间件 网络安全 nginx
快速上手!使用Docker和Nginx部署Web服务的完美指南
快速上手!使用Docker和Nginx部署Web服务的完美指南
|
并行计算 PyTorch 算法框架/工具
【pytorch】解决pytorch:Torch not compiled with CUDA enabled
【pytorch】解决pytorch:Torch not compiled with CUDA enabled
8538 0
|
10月前
|
API
随机一言免费API接口教程
此API可随机生成心灵鸡汤、名言警句等,适用于各类评论。需提供用户ID和KEY。请求方式支持POST/GET,返回状态码及内容。详情及示例参见官方文档。
|
网络协议 Linux 网络安全
如何用阿里云实现内网穿透?如何在外网访问家里内网设备?
使用NPS自建内网穿透服务器教程,带WEB管理
34436 12
|
11月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
2602 0
线程间通信的几种方法
线程间通信的几种方法
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
|
存储 程序员 芯片
虚拟地址和物理地址之间的区别
【4月更文挑战第12天】
1334 2
虚拟地址和物理地址之间的区别
|
机器学习/深度学习 算法 计算机视觉
YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocusIoU等多种损失函数
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

热门文章

最新文章