《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(下)

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(下)

《Serverless数据库技术研究报告》——四、 总结和展望——(一)PolarDB、AnalyticDB支撑双十一阿里集团电商业务(上) https://developer.aliyun.com/article/1223515?groupCode=polardbforpg


产品解决方案


面对OLTP业务挑战,阿里通过云化架构提升整体的技术效率和全局资源的弹性伸缩能力,数据库采用了云原生的自研数据库PolarDB提供了高弹性、高性能的云数据库服务,大幅降低了节日大促的保障成本和复杂度。PolarDB全面容器化发挥云的弹性能力,减少自采基础设施的投入在双十一前期,结合压测结果,业务预估所需资源按需申请,将原有资源占有时间从1年降低到1月,大幅降低成本。大促期间,serverless能力提供分钟级的规格自动调整,存储计算分离架构增加节点无需搬迁数据,分钟级扩展节点,快速紧急扩容保障用户体验。大促过后,资源自动降配,闲置资源自动释放降低成本。面对OLAP业务挑战,AnalyticDB 通过拥抱云原生,完成了重大架构升级,在公有云上也同步发布了新版弹性模式,让用户拥有极高性价比、极致弹性的新一代数据仓库。AnalyticDB的新弹性模式形态,后端采用了计算存储分离的新架构,提供统一的服务化Serverless存储层,计算层可以独立弹性扩展,同时兼具了预留模式的性能。通过计算与存储的解耦,用户可以灵活地单独对计算资源、存储容量进行扩缩,合理的控制成本。针对计算资源的扩缩,不再需要数据的搬迁,具备更极致的弹性体验。搭配AnalyticDB全新研发的行存引擎,在这个双11首次表现亮眼,可支持千万级QPS在线高并发检索和分析,实现单表点查、聚合及TopN是开源ElasticSearch的2-5倍,存储空间节省50%,写入性能是其5-10倍,并且保证数据的实时可见和数据高可靠。

1684815617525.png


客户收益


双十一交易系统全面云化,阿里云自研云原生数据库PolarDB承载了阿里电商核心业务数据库流量,按需资源分配,分钟级弹性扩缩容,支撑双十一亿级访问峰值,CPU利用率平均提升20%以上,单表交易成本下降50%,运营效率提升3倍,保障双十一业务平稳。AnalyticDB通过全面云原生化,成功的在这次双11中为阿里集团的核心业务保驾护航。从核心交易链路的高并发在线检索到复杂实时分析应用场景,表现非常稳定。当天各项指标再创新高,AnalyticDB当天的写入TPS峰值到达2.14亿,通过离在线一体化架构,支持在线ETL及实时查询Job数达到174571个/秒,离线ETL导入导出任务570267个,处理的实时数据量达到7.7万亿行。为核心业务方提供了数据处理ETL、实时在线分析、核心报表、大屏和监控能力,保障了数十万商家和千万消费者的稳定的离在线数据服务。

1684815726036.png

相关实践学习
函数计算X RDS PostgreSQL,基于LLM大语言模型构建AI知识库
基于ChatGLM6B 大语言模型构建AI知识库问答应用。答疑群17125058181
相关文章
|
2月前
|
关系型数据库 Serverless 分布式数据库
扩缩容操作对PolarDB Serverless的性能有多大影响?
PolarDB Serverless 的扩缩容操作对性能会产生一定的影响,但通过合理的规划、监测和措施,可以将这种影响控制在较小的范围内。同时,随着技术的不断进步和优化,扩缩容操作对性能的影响也会逐渐减小,为用户提供更稳定、高效的数据库服务体验。
100 57
|
2月前
|
关系型数据库 Serverless 分布式数据库
PolarDB Serverless 的自动扩缩容机制
PolarDB Serverless 作为一种创新的数据库服务模式,其自动扩缩容功能是其重要的特性之一。这一功能为用户带来了诸多优势,同时也有着复杂而精密的运作机制。
|
2月前
|
监控 关系型数据库 Serverless
扩缩容操作对 PolarDB Serverless 性能的影响
扩缩容操作对 PolarDB Serverless 性能的影响
26 3
|
2月前
|
关系型数据库 Serverless 分布式数据库
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益
PolarDB Serverless 模式通过自动扩缩容技术,根据实际工作负载动态调整资源,提高系统灵活性与成本效益。用户无需预配高固定资源,仅需为实际使用付费,有效应对流量突变,降低总体成本。示例代码展示了基本数据库操作,强调了合理规划、监控评估及结合其他云服务的重要性,助力企业数字化转型。
35 6
|
5月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
1515 2
|
5月前
|
关系型数据库 Serverless 分布式数据库
揭秘PolarDB Serverless:大促洪峰秒级应对,无感伸缩见证科技魔法!一探云数据库管理的颠覆性革新,强一致性的守护神来了!
【8月更文挑战第13天】在云计算背景下,阿里巴巴的云原生数据库PolarDB Serverless针对弹性伸缩与高性能一致性提供了出色解决方案。本文通过一个电商平台大促活动的真实案例全面测评PolarDB Serverless的表现。面对激增流量,PolarDB Serverless能秒级自动扩展资源,如通过调用`pd_add_reader`快速增加读节点分摊压力;其无感伸缩确保服务平滑运行,不因扩展中断;强一致性模型则保障了数据准确性,即便在高并发写操作下也确保库存等数据的同步一致性。PolarDB Serverless简化了数据库管理,提升了系统效能,是追求高效云数据库管理企业的理想选择。
111 7
|
6月前
|
关系型数据库 MySQL Serverless
体验阿里云PolarDB MySQL Serverless集群
体验阿里云PolarDB MySQL Serverless集群
|
6月前
|
分布式计算 DataWorks 关系型数据库
阿里云数加-分析型数据库AnalyticDB数据导入的多样化策略
通过合理利用这些数据导入方法,用户可以充分发挥AnalyticDB的实时计算能力和高并发查询性能,为业务分析和决策提供强有力的数据支持。
|
4月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
186 13
|
2天前
|
存储 人工智能 Serverless
7分钟玩转 AI 应用,函数计算一键部署 AI 生图大模型
人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。

相关产品

  • 云原生数据库 PolarDB
  • 下一篇
    开通oss服务