Web优化躬行记(6)——优化闭环实践

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Web优化躬行记(6)——优化闭环实践

 在遇到一个页面性能问题时,我理解的优化闭环是:分析、策略、验证和沉淀。

  • 分析需要有分析数据,因此得有一个性能监控管理。
  • 策略就是制订针对性的优化方案,解决当前遇到的问题。
  • 验证的对象上述策略,判断方案是否有效,同样需要数据支撑。
  • 沉淀就是将解决过程文档化、通用化,能够总结成一套实际方案、优化规则等。

  这其中非常关键的一步是需要采集到性能数据,并且得有个可视化后台查看数据变化。

  在之前已经自制了一个性能优化平台,采集前端性能参数的 SDK 叫 shin.js


一、优化的三部分


  在文章开头,我想先聊聊网页优化的三部分:网络,渲染和容器。

  第一部分的网络就是提升传输速度,可优化的手段包括 gzipped压缩、CDN、HTTP 缓存、HTTP 2.0协议、并发请求等。

  像 HTTP 缓存分为强缓存和协商缓存,请求首部和浏览器配合完成资源的缓存机制,下图摘自《前端程序员面试笔试宝典》。

  

  第二部分的渲染就是 CRP 优化(关键渲染路径),CRP 是指浏览器从接收资源到渲染像素的过程。

  优化的点包括资源数、字节数和加载时序。现代化的 webpack 构建工具就会对资源做前两项的优化处理,包括压缩文件、合并文件、优化包的引入等。

  加载时序就包括日常都会用的图片懒加载和预加载、脚本的延迟(defer)、异步(async)和预加载(preload)等。

  对于比较庞大的首页,可以先将那些能阻塞网页首次渲染的关键资源载入,其余资源都延迟载入,以此提升页面打开速度。

  第三部分的容器(WebView)就是借用端的能力,让 APP 配合优化网页。

  例如预请求,将请求接口的时机前置到容器打开之时,下面是一张实现流程图。

  

  还有一种静态资源缓存至客户端本地,当时与公司客户端讨论此方案时,他们觉得每次拦截请求会损伤性能,后面就采用了折中的办法。

  就是他们去主动请求特定地址的静态资源,然后开放接口让我可以去读取本地资源,也就是说由 Web 来控制是否读取缓存资源。


二、问题引出  


  现在言归正传,回到本次的优化中来。

  为了提升页面产出率,联合 UI 设计构建了一套可配置的通用活动模板

  活动上线后,就查看了性能数据,情况很不理想,如下图所示。

  

  FP(白屏)时间大部分都在 2 秒以上,取平均值更是在 3 秒左右。Google的报告指出:

  • 如果网页加载时间从 1 秒增加到 3 秒,跳出率就会提高 32%
  • 如果网页加载时间从 1 秒增加到 6 秒,跳出率就会上升 106%

三、数据排查


  在数据库中,将指定的性能数据记录导出到 Excel 中。

  翻了一条后发现,性能问题集中在 DOM 中。

{
    "unloadEventTime": 0,
    "loadEventTime": 1,
    "interactiveTime": 1255,
    "parseDomTime": 1075,
    "initDomTreeTime": 721,
    "readyStart": 5,
    "redirectCount": 0,
    "compression": 0,
    "redirectTime": 0,
    "appcacheTime": 0,
    "lookupDomainTime": 0,
    "connectSslTime": 0,
    "connectTime": 0,
    "requestTime": 119,
    "requestDocumentTime": 119,
    "responseDocumentTime": 0,
    "TTFB": 534,
}

  JSON 中的 interactiveTime、parseDomTime 和 initDomTreeTime 消耗的时间都不短,计算规则如下所示。

/**
     * 解析 DOM 树结构的时间
     * 期间要加载内嵌资源
     * 反省下你的 DOM 树嵌套是不是太多了
     */
    api.parseDomTime = timing.domComplete - timing.domInteractive;
    /**
     * 请求完毕至DOM加载耗时
     */
    api.initDomTreeTime = timing.domInteractive - timing.responseEnd;
    /**
     * 首次可交互时间
     */
    api.interactiveTime = timing.domInteractive - timing.fetchStart;

  参考 W3C 第二版性能参数图可知,慢的地方集中在 Processing 阶段。

  


四、Chrome DevTools


  打开 Chrome DevTools 中的 Performance 一栏,录制后,可在火焰图中看到长任务。

  点击 Long task 链接,会跳转到使用 RAIL 模型衡量性能一文。

  

  在 PC 浏览器中打开肯定会比在手机中快,但即使如此,还是出现了性能瓶颈,说明这里是真的慢。

  蓝底的 DCL 是 DOMContentLoaded 事件,在 HTML 文档被完全加载和解析后触发,绿底的 FP 就是白屏时间。

  黄底的 Evaluate Script 表示加载 JavaScript 脚本,Compile Script 表示执行 JavaScript 脚本。

  再来看看网络请求瀑布图,下图中的蓝线就是 DCL,可以清晰的看到,蓝线之前在加载的基本都是 JavaScript 脚本。

  

  由此可知,加载的脚本有点多,并且有一个 chunk-vendors.js 脚本还比较大,下载时间有点长(依据蓝色块)。


五、代码分析


  定位到了问题根源,那就直接查看基于 Vue 的代码是怎么写的了。

1)HTML

  下面是编译后的页面 HTML 结构,只列出了关键部分。

<!DOCTYPE html>
<html lang=en>
<head>
  <script src=https://res.wx.qq.com/open/js/jweixin-1.6.0.js></script>
  <script src=//www.xxxx.com/flexible/flexible.js></script>
  <script src=//www.xxxx.co/files/js/baidu.js></script>
  <script src=//www.xxxx.co/files/js/shin.js></script>
  <link href=//www.xxxx.me/game/css/operation37.cba04f10.css rel=preload as=style>
  <link href=//www.xxxx.me/game/js/chunk-lodash.152ef24b.js rel=preload as=script>
  <link href=//www.xxxx.me/game/js/chunk-lottie.23b9982e.js rel=preload as=script>
  <link href=//www.xxxx.me/game/js/operation37.fa5f5378.js rel=preload as=script>
  <link href=//www.xxxx.me/game/css/chunk-vendors.779f7d1d.css rel=stylesheet>
  <link href=//www.xxxx.me/game/css/operation37.cba04f10.css rel=stylesheet>
</head>
<body>
  <div id=app></div>
  <script src=//www.xxxx.me/game/js/chunk-vendors.ca022e99.js></script>
  <script src=//www.xxxx.me/game/js/operation37.fa5f5378.js></script>
</body>
</html>

  首先在 head 中,引入了大量的 JavaScript 脚本,flexible.js 其实在构建时可以内联,不需要网络访问。

  然后 jweixin-1.6.0.js 和 baidu.js 这两个脚本完全可以延迟加载,后者就是增加百度统计的脚本。

  接着就是 shin.js 需要做压缩处理,可以减少 50% 以上的尺寸。

  在 link 元素中,使用了 preload,表示可并行的预加载,并且不会执行,这是提升页面性能的一种手段。

  虽然第三方的库(chunk-vendors.ca022e99.js)和业务主逻辑(operation37.fa5f5378.js)两个脚本声明在 body 中。

  但是主结构就是个空的 div,因此在加载和运行时就会延长 DOM 的解析,影响白屏时间。

2)vendors 优化

  Vue 内置了一条命令,可以查看每个脚本的尺寸以及内部依赖包的尺寸。

  在下图中,vendors.js 的原始尺寸是 3.76M,gzipped 压缩后的尺寸是 442.02KB,比较大的包是 lottie、swiper、moment、lodash 等。

  

  这类比较大的包可以再单独剥离,不用全部聚合在 vendors.js 中。

  在 vue.config.js 中,配置 config.optimization.splitChunks(),如下所示,参数含义可参考官网

config.optimization.splitChunks(
      {
        cacheGroups: {
          vendors: {
            name: 'chunk-vendors',
            test: /[\\/]node_modules[\\/]/,
            priority: -10,
            chunks: 'initial'
          },
          lottie: {
            name: 'chunk-lottie',
            test: /[\\/]node_modules[\\/]lottie-web[\\/]/,
            chunks: 'all',
            priority: 3,
            reuseExistingChunk: true,
            enforce: true
          },
          swiper: {
            name: 'chunk-swiper',
            test: /[\\/]node_modules[\\/]_swiper@3.4.2@swiper[\\/]/,
            chunks: 'all',
            priority: 3,
            reuseExistingChunk: true,
            enforce: true
          },
          lodash: {
            name: 'chunk-lodash',
            test: /[\\/]node_modules[\\/]lodash[\\/]/,
            chunks: 'all',
            priority: 3,
            reuseExistingChunk: true,
            enforce: true
          }
        }
      }
    )

  在经过一顿初步操作后,原始尺寸降到 2.4M,gzipped 压缩后的尺寸是 308.64KB,比之前少了 100 多 KB。

  

  现在在入口处需要单独声明依赖的包,否则不会自动引入。

pages: {
   operation37: {
      entry: 'src/pages/operation37/index.js',
      template: 'src/pages/operation37/index.html',
      filename: 'operation37.html',
      title: '榜单配置页面',
      chunks: ['chunk-lottie', 'operation37', 'chunk-vendors']
   },
}

  其实大部分的 H5 页面都比较简单,可能就使用了包的一个小功能,那完全可以自己用代码实现,这样就不必依赖那个大包了。

  后面就是在代码逻辑层面的优化,核心就是减少脚本尺寸。优化后,再去观察数据的变化。

3)CDN加速

  之前部分静态资源采取了 CDN 加速,现在需要将 game 下面中的静态资源全部走 CDN。

  在云端配置些参数,就能走 CDN。不过,第一次没有配置好,没有配置转发路径,造成了严重的线上问题。

  第二次就比较谨慎,在测试环境将之前碰到的问题都验证后,才最终在线上配置。

  白屏时间占比变化:

  • 1 秒内的占比从 77.3% 最高提升至 78.7%
  • 1 - 2 秒占比从 15.6% 最高提升至 18.7%
  • 2 - 3 秒占比从 4% 最低下降至 1.8%
  • 3 - 4 秒占比从 1.1% 最低下降至 0.6%
  • 4 秒以上的占比从 2.1% 最低下降至 1.4%

 

参考资料:

长的 JavaScript 任务是否会延迟您的交互时间?

狙杀页面卡顿 —— Performance 工具指北

chrome performance看浏览器渲染过程

深入理解浏览器解析渲染 HTML

Vue CLI 项目页面打开时间优化:从16秒到2秒内

preload 让加载和解析解耦

分类: Web优化躬行记

相关文章
|
6天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
1月前
|
前端开发 JavaScript 开发工具
从框架到现代Web开发实践
从框架到现代Web开发实践
46 1
|
1月前
|
前端开发 开发者 UED
移动优先:响应式设计在现代Web开发中的实践策略
【10月更文挑战第29天】在现代Web开发中,响应式设计已成为不可或缺的实践策略,使网站能适应各种设备和屏幕尺寸。本文介绍了移动优先的设计理念,对比了移动优先与桌面优先的策略,探讨了流式布局与固定布局的区别,详细讲解了CSS媒体查询的使用方法,并强调了触摸和手势支持及性能优化的重要性。
39 1
|
2月前
|
开发框架 自然语言处理 PHP
PHP在Web开发中的持久魅力与创新实践###
【10月更文挑战第17天】 本文探讨了PHP作为一门老牌却充满活力的编程语言,在现代Web开发中的独特优势和未来趋势。通过分析其简洁性、灵活性、强大生态系统及不断创新的特性,本文旨在揭示PHP为何能持续吸引开发者,并在技术快速迭代的时代保持竞争力。同时,文章也展望了PHP在未来Web开发领域的发展潜力,强调其在技术创新和社区支持下,依然能够引领Web开发的新潮流。 ###
44 9
|
1月前
|
SQL 安全 Go
PHP在Web开发中的安全实践与防范措施###
【10月更文挑战第22天】 本文深入探讨了PHP在Web开发中面临的主要安全挑战,包括SQL注入、XSS攻击、CSRF攻击及文件包含漏洞等,并详细阐述了针对这些风险的有效防范策略。通过具体案例分析,揭示了安全编码的重要性,以及如何结合PHP特性与最佳实践来加固Web应用的安全性。全文旨在为开发者提供实用的安全指南,帮助构建更加安全可靠的PHP Web应用。 ###
46 1
|
2月前
|
机器学习/深度学习 缓存 监控
利用机器学习优化Web性能和用户体验
【10月更文挑战第16天】本文探讨了如何利用机器学习技术优化Web性能和用户体验。通过分析用户行为和性能数据,机器学习可以实现动态资源优化、预测性缓存、性能瓶颈检测和自适应用户体验。文章还介绍了实施步骤和实战技巧,帮助开发者更有效地提升Web应用的速度和用户满意度。
|
2月前
|
存储 安全 数据库
后端技术在现代Web开发中的实践与创新
【10月更文挑战第13天】 本文将深入探讨后端技术在现代Web开发中的重要性,通过实际案例分析展示如何利用先进的后端技术提升用户体验和系统性能。我们将从基础架构设计、数据库优化、安全性保障等方面展开讨论,为读者提供清晰的指导和实用的技巧。无论是新手开发者还是经验丰富的技术人员,都能从中获得启发和帮助。
54 2
|
2月前
|
自然语言处理 Cloud Native 数据安全/隐私保护
后端技术在现代Web开发中的实践与创新
本文探讨了后端技术在现代Web开发中的重要性及其应用。通过分析当前流行的后端框架和开发模式,揭示了如何利用这些技术来构建高效、可扩展的Web应用程序。同时,文章也讨论了未来后端技术的发展趋势,为开发者提供了一些启示。
|
1月前
|
关系型数据库 API PHP
PHP在Web开发中的优势与实践###
【10月更文挑战第24天】 PHP是一种流行的服务器端脚本语言,特别适合Web开发。其简单易学、灵活性高和广泛应用的特点,使其成为众多开发者的首选。本文将探讨PHP在Web开发中的主要优势及其实际应用,通过实例展示如何使用PHP构建高效、可靠的Web应用。无论你是初学者还是有经验的开发者,这篇文章都将提供有价值的见解和实用技巧。 ###
45 0
|
2月前
|
Web App开发 Java 测试技术
一、自动化:web自动化。Selenium 入门指南:从安装到实践
一、自动化:web自动化。Selenium 入门指南:从安装到实践
55 0