企业运维之云上网络原理与实践-备份与恢复(下)

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 企业运维之云上网络原理与实践-备份与恢复

接上篇:

搭建RO

 

您可以通过以下两种方式来搭建RO node。

 

使用initdb来搭建RO

 

主要步骤是使用initdb初始化RO的本地存储目录,然后修改配置文件,启动实例。具体请参考只读节点部署

 

备份RW的本地存储目录来搭建RO

 

这里使用备份RW的本地存储目录。下面通过polar_basebakcup来演示:

 

1. polar_basebackup --host=[主节点所在IP] --port=5432 -D /home/postgres/replica1 -X stream --progress --write-recovery-conf -v  

 

image.png

完成polar_basebackup命令后,我们可以看到/home/postgres/replica1中存在一个polar_shared_data搭建RO时不需要它,将它删除:

 

1. rm -rf /home/postgres/replica1/polar_shared_data  

 

 

打开/home/postgres/replica1/postgresql.conf,修改如下配置项:

 

1.

2. port=5433  

3. polar_hostid=2  

4. polar_enable_shared_storage_mode=on  

5. polar_disk_name='nvme0n1'  

6. polar_datadir='/nvme0n1/shared_data/'  

7. polar_vfs.localfs_mode=off  

8. shared_preload_libraries='$libdir/polar_vfs,$libdir/polar_worker'  

9. polar_storage_cluster_name='disk'  

10. logging_collector=on  

11. log_line_prefix='%p\t%r\t%u\t%m\t'  

12. log_directory='pg_log'  

13. listen_addresses='*'  

14. max_connections=1000  

15. synchronous_standby_names=''

 

打开/home/postgres/replica1/recovery.conf,使用以下配置项替换文件中的所有内容:

 

1. polar_replica='on'  

2. recovery_target_timeline='latest'  

3. primary_slot_name='replica1'  

4. primary_conninfo='host=[主节点所在IP] port=5432 user=postgres dbname=postgres application_name=replica1'  

 

最后,启动只读节点:

 

1. $HOME/tmp_basedir_polardb_pg_1100_bld/bin/pg_ctl start -D $HOME/replica1  

 

检查只读节点能否正常运行:

 

1. $HOME/tmp_basedir_polardb_pg_1100_bld/bin/psql \  

2.    -p 5433 \  

3.    -d postgres \  

4.    -c 'select version();'  

5.            version  

6. --------------------------------  

7. PostgreSQL 11.9 (POLARDB 11.9)  

8. (1 row)  

 

搭建Standby

 

您可以使用全量备份集搭建Standby,这里推荐使用polar_basebackup进行搭建,下面介绍搭建流程。

 

使用polar_basebakcup对实例作全量备份

 

1. polar_basebackup --host=[主节点所在IP] --port=5432 -D /home/postgres/standby --polardata=/nvme0n2/shared_data/  --polar_storage_cluster_name=disk --polar_disk_name=nvme0n2  --polar_host_id=3 -X stream --progress --write-recovery-conf -v  

 

image.png

提示

 

注意这里是构建共享存储的Standby,首先您需要找一台机器部署好PolarDB及其文件系统PolarFS,且已经搭建好了共享存储nvme0n2具体操作请参考准备块设备与搭建文件系统

 

备份完成后如下图所示:

 

image.png

提示

 

如果您没有共享存储设备,则不需要指定--polar_storage_cluster_name,--polar_disk_name,--polar_host_id参数。

 

下面我们简单介绍下其他形态的PolarDB备份:

 

1. -- 单节点本地备份  

2. polar_basebackup -D /polardb/data-standby -X stream  --progress --write-recovery-conf -v  

3. --共享存储本地备份  

4. polar_basebackup -D /polardb/data-standby --polardata=/polardb/data-local  -X stream --progress --write-recovery-conf -v  

5. -- 共享存储写入pfs  

6. polar_basebackup -D /polardb/data-standby --polardata=/nvme7n1/data  --polar_storage_cluster_name=disk --polar_disk_name=nvme7n1  --polar_host_id=3  

 

检查备份是否正常

 

查看本地目录:

 

image.png

查看共享存储目录:

 

image.png

修改postgresql.conf

 

将参数修改为如下所示:

 

1. polar_hostid = 3  

2. polar_disk_name = 'nvme0n2'  

3. polar_datadir = '/nvme0n2/shared_data'  

4. polar_storage_cluster_name = 'disk'  

5. synchronous_standby_names=''  

 

在主库中创建复制槽

 

1. psql --host=[主节点所在IP]  --port=5432 -d postgres -c 'SELECT * FROM pg_create_physical_replication_slot('standby1');'  

2. slot_name | lsn  

3. -----------+-----  

4. standby1  |  

5. (1 row)  

 

修改Standby本地目录配置

 

在Standby的本地存储目录中recovery.conf文件中增加如下参数:

 

1. recovery_target_timeline = 'latest'  

2. primary_slot_name = 'standby1'  

 

启动Standby

 

1. $HOME/tmp_basedir_polardb_pg_1100_bld/bin/pg_ctl start -D $HOME/standby  

 

验证Standby

 

1. psql --host=[master所在IP] --port=5432 -d postgres -c "create table t(t1 int primary key, t2 int);insert into t values (1, 1),(2, 3),(3, 3);"  

2. CREATE TABLE  

3. INSERT 0 3  

 

1. psql --host=[standby所在IP] --port=5432 -d postgres -c ' select * from t;'  

2. t1 | t2  

3. ----+----  

4. 1 |  1  

5. 2 |  3  

6. 3 |  3  

7. (3 rows)  

 

按时间点恢复

 

可以参考PostgreSQL按时间点恢复PITR。其原理如图所示,使用备份集加上归档日志,可以恢复出任意历史时刻的PolarDB实例:

 

image.png

相关实践学习
函数计算X RDS PostgreSQL,基于LLM大语言模型构建AI知识库
基于ChatGLM6B 大语言模型构建AI知识库问答应用。答疑群17125058181
相关文章
|
3天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
11天前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
11天前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
11天前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
11天前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
20天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章