ORACLE常用性能监控SQL【二】(下)

简介: ORACLE常用性能监控SQL【二】(下)

TOP 10 CPU排序(单位秒=cpu_time/1000000)


select *
from (select CPU_TIME/1000000,username,PARSING_USER_ID,sql_id,ELAPSED_TIME/1000000,sql_text  
   from v$sql,dba_users where user_id=PARSING_USER_ID order by CPU_TIME/1000000 desc)
where rownum <=5;


(不要使用CPU_TIME/ EXECUTIONS来排序,因为任何一条语句不管执行几次都会耗逻辑读和cpu,可能不会耗物理读(遇到LRU还会耗物理读,LRU规则是执行最不频繁的且最后一次执行时间距离现在最久远的就会被交互出buffer cache),是因为buffer cache存放的是数据块,去数据块里找行一定会消耗cpu和逻辑读的。Shared pool执行存放sql的解析结果,sql执行的时候只是去share pool中找hash value,如果有匹配的就是软解析。所以物理读逻辑读是在buffer cache中,软解析硬解析是在shared pool)


查询等待事件


select event,
       sum(decode(wait_time, 0, 0, 1)) "之前等待次数",
       sum(decode(wait_time, 0, 1, 0)) "正在等待次数",
       count(*)
  from v$session_wait
 group by event
 order by 4 desc


查询当前正在消耗temp空间的sql语句


Select distinct se.username,
         se.sid,
         su.blocks * to_number(rtrim(p.value))/1024/1024 as space_G,
         su.tablespace,
         sql_text
    from V$TEMPSEG_USAGE su, v$parameter p, v$session se, v$sql s
   where p.name = 'db_block_size'
     and su.session_addr=se.saddr
     and su.sqlhash=s.hash_value
     and su.sqladdr=s.address


查询需要使用绑定变量的sql,10G以后推荐第二种



(任何一条执行过的语句不管执行了几次在V$SQL中都只有一条记录,V$SQL中会记录执行了几次。两条一模一样的语句但是在不同的schema下执行的两种结果,如select * from t1.test在sye、system下执行则V$SQL只有一条记录(谁先执行则PARSING_SCHEMA_NAME显示谁)。如在sys和system都执行select * from test则V$SQL中有两条记录,两条记录的CHILD_NUMBER和PARSING_SCHEMA_NAME不一样。同一个用户下执行一样的语句如果大小写不一样或加了hint的话则会出现多个V$SQL记录,说明V$SQL对应的sql语句必须一模一样,如果alter system flush shared_pool(主站慎用)后再执行一样的语句,发现语句在V$SQL中的SQL_ID和HASH_VALUE与之前的一样,说明SQL_ID和HASH_VALUE应该是oracle自己的一套算法来的,只是根据sql语句内容来进行转换,sql语句不变则SQL_ID和HASH_VALUE也不变。)


第一种

select * from (
select count(*),sql_id, substr(sql_text,1,40)
from v$sql
group by sql_id, substr(sql_text,1,40) having count(*) > 10 order by count(*) desc) where rownum<10


第二种

count(1)>10表示类语句运行了10次以上

select sql_id, FORCE_MATCHING_SIGNATURE, sql_text
from v$SQL
where FORCE_MATCHING_SIGNATURE in
(select /*+ unnest */
FORCE_MATCHING_SIGNATURE
from v$sql
where FORCE_MATCHING_SIGNATURE > 0
and FORCE_MATCHING_SIGNATURE != EXACT_MATCHING_SIGNATURE
group by FORCE_MATCHING_SIGNATURE
having count(1) > 10)


查看数据文件可用百分比

select b.file_id,b.tablespace_name,b.file_name,b.AUTOEXTENSIBLE,
ROUND(b.bytes/1024/1024/1024,2) ||'G'  "文件总容量",
ROUND((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024,2)||'G' "文件已用容量",
ROUND(sum(nvl(a.bytes,0))/1024/1024/1024,2)||'G' "文件可用容量",
ROUND(sum(nvl(a.bytes,0))/(b.bytes),2)*100||'%' "文件可用百分比"
from dba_free_space a,dba_data_files b
where a.file_id=b.file_id
group by b.tablespace_name,b.file_name,b.file_id,b.bytes,b.AUTOEXTENSIBLE
order by b.tablespace_name;


查看数据文件可用百分比(文件自增长的情况下)

select b.file_id,b.tablespace_name,b.file_name,b.AUTOEXTENSIBLE,
ROUND(b.MAXBYTES/1024/1024/1024,2) ||'G'  "文件最大可用总容量",
ROUND((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024,2)||'G' "文件已用容量",
ROUND(((b.MAXBYTES/1024/1024/1024)-((b.bytes-sum(nvl(a.bytes,0)))/1024/1024/1024))/(b.MAXBYTES/1024/1024/1024),2)*100||'%' "文件可用百分比"
from dba_free_space a,dba_data_files b
where a.file_id=b.file_id and b.file_id>4
group by b.tablespace_name,b.file_name,b.file_id,b.bytes,b.AUTOEXTENSIBLE,b.MAXBYTES
order by b.tablespace_name;


查看表空间可用百分比

select b.tablespace_name,a.total,b.free,round((b.free/a.total)*100) "% Free" from
(select tablespace_name, sum(bytes/(1024*1024)) total from dba_data_files group by tablespace_name) a,
(select tablespace_name, round(sum(bytes/(1024*1024))) free from dba_free_space group by tablespace_name) b
WHERE a.tablespace_name = b.tablespace_name
order by "% Free";


查看临时表空间使用率(临时文件是AUTOEXTENSIBLE的情况下可能空闲率是0)

SELECT temp_used.tablespace_name,total,used,
           total - used as "Free",
           round(nvl(total-used, 0) * 100/total,3) "Free percent"
      FROM (SELECT tablespace_name, SUM(bytes_used)/1024/1024 used
              FROM GV_$TEMP_SPACE_HEADER
             GROUP BY tablespace_name) temp_used,
           (SELECT tablespace_name, SUM(bytes)/1024/1024 total
              FROM dba_temp_files
             GROUP BY tablespace_name) temp_total
     WHERE temp_used.tablespace_name = temp_total.tablespace_name


查询undo表空间使用情况

select tablespace_name, status, sum(bytes) / 1024 / 1024 M
  from dba_undo_extents
 group by tablespace_name, status


查看ASM磁盘组使用率

select name,
       round(total_mb / 1024) "总容量",
       round(free_mb / 1024) "空闲空间",
       round((free_mb / total_mb) * 100) "可用空间比例"
  from gv$asm_diskgroup


统计每个用户使用表空间率

SELECT c.owner                                  "用户",
       a.tablespace_name                        "表空间名",
       total/1024/1024                          "表空间大小M",
       free/1024/1024                           "表空间剩余大小M",
       ( total - free )/1024/1024               "表空间使用大小M",
       Round(( total - free ) / total, 4) * 100 "表空间总计使用率   %",
       c.schemas_use/1024/1024                  "用户使用表空间大小M",
       round((schemas_use)/total,4)*100         "用户使用表空间率  %"
FROM   (SELECT tablespace_name,
               Sum(bytes) free
        FROM   DBA_FREE_SPACE
        GROUP  BY tablespace_name) a,
       (SELECT tablespace_name,
               Sum(bytes) total
        FROM   DBA_DATA_FILES
        GROUP  BY tablespace_name) b,
       (Select owner ,Tablespace_Name,
                Sum(bytes) schemas_use
        From Dba_Segments
        Group By owner,Tablespace_Name) c
WHERE  a.tablespace_name = b.tablespace_name
and a.tablespace_name =c.Tablespace_Name
order by "用户","表空间名"


查看闪回区\快速恢复区空间使用率


select sum(percent_space_used) || '%' "已使用空间比例"
  from V$RECOVERY_AREA_USAGE


select round(100 * (a.space_used / space_limit), 2) || '%' "已使用空间比例",
       a.*
  from v$recovery_file_dest a;


查看僵死进程,分两种(一种是会话不在的,另一种是会话标记为killed的但是会话还在的)


alter system kill session一执行则session即标记为KILLED,但是如果会话产生的数据量大则这个kill可能会比较久,在这个过程中session标记为KILLED但是这个会话还在V$session中,则V$session.paddr还在,所以可以匹配到V$process.addr,所以process进程还在;当kill过程执行完毕,则这个会话即不在V$session中


会话不在的

select *
  from v$process
 where addr not in (select paddr from v$session)
   and pid not in (1, 17, 18)

会话还在的,但是会话标记为killed

select *
  from v$process
 where addr in (select paddr from v$session where status = 'KILLED')


再根据上述结果中的SPID通过如下命令可以查看到process的启动时间

ps auxw|head -1;ps auxw|grep SPID


查看行迁移或行链接的表


select * From dba_tables where nvl(chain_cnt, 0) <> 0


chain_cnt :Number of rows in the table that are chained from one data block to another or that have migrated to a new block, requiring a link to preserve the old rowid. This column is updated only after you analyze the table.


数据缓冲区命中率(百分比小于90就要加大db_cache_size)


查询V$SYSSTAT视图可以查看从内存中读取数据的频率。它提供了数据库中设置的数据块缓存区的命中率。这个信息可以帮助您判断系统何时需要更多的数据缓存(DB_CACHE_SIZE),或者系统的状态何时调整得不佳(二者均将导致较低的命中率)。


通常情况下,您应当确保读数据的命中率保持在95%以上。将系统的命中率从98%提高到99%,可能意味着性能提高了100%(取决于引起磁盘读操作的语句)。


SELECT a.VALUE + b.VALUE logical_reads,
       c.VALUE phys_reads,
       round(100 * (1 - c.value / (a.value + b.value)), 2) || '%' hit_ratio
  FROM v$sysstat a, v$sysstat b, v$sysstat c
 WHERE a.NAME = 'db block gets'
   AND b.NAME = 'consistent gets'
   AND c.NAME = 'physical reads';

SELECT DB_BLOCK_GETS + CONSISTENT_GETS Logical_reads,
       PHYSICAL_READS phys_reads,      
       round(100 *
             (1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS))),
             2) || '%' "Hit Ratio"
  FROM V$BUFFER_POOL_STATISTICS
 WHERE NAME = 'DEFAULT';


SELECT 1 - (SUM(DECODE(NAME, 'physical reads', VALUE, 0)) /
       (SUM(DECODE(NAME, 'db block gets', VALUE, 0)) +
       (SUM(DECODE(NAME, 'consistent gets', VALUE, 0))))) "Read Hit Ratio"
  FROM v$sysstat;


或者

在Oracle 10g中,也可以直接获得V$SYSMETRIC中的 AWR 信息:

select metric_name, value
  from v$sysmetric
 where metric_name = 'Buffer Cache Hit Ratio';


测定数据字典的命中率(V$ROWCACHE)


可以使用V$ROWCACHE视图来发现对数据字典的调用是否有效地利用了通过init.ora参数SHARED_POOL_SIZE分配的内存缓存.


如果字典的命中率不高,系统的综合性能将大受影响。推荐的命中率是95%或者更高。如果命中率低于这个百分比,说明可能需要增加init.ora参数SHARED_POOL_SIZE。


但要记住,在V$SGASTAT视图中看到的共享池包括多个部分,而这里仅仅就是其中之一。注意:在大幅度使用公共同名的环境中,字典命中率可能难以超过75%,即使共享池的尺寸很大。这是因为Oracle必须经常检查不存在的对象是否依旧存在。

SQL> select sum(gets),sum(getmisses),(1 - (sum(getmisses) / (sum(gets)+ sum(getmisses)))) * 100 HitRate from v$rowcache;
 SUM(GETS) SUM(GETMISSES)    HITRATE
---------- -------------- ----------
  35555492         186408 99.4784608

在Oracle 10g中,也可以直接获得V$SYSMETRIC中的AWR信息:

SQL> select metric_name, value from v$sysmetric where metric_name ='Library Cache Hit Ratio';
METRIC_NAME                                           VALUE
---------------------------------------------------------------- ----------
Library Cache Hit Ratio                        98.7987987
Library Cache Hit Ratio                               100



测定共享SQL和PL/SQL的命中率(V$LIBRARYCACHE)


访问V$LIBRARYCACHE视图可以显示实际使用的语句(SQL和PL/SQL)访问内存的情况。如果init.ora的参数SHARED_POOL_SIZE设置得太小,内存中就没有足够的空间来存储所有的语句。固定命中率通常应该是95%或更高,而重载的次数不应该超过1%。查询V$SQL_BIND_CAPTURE视图,看看每个SQL绑定是否太高,是否需要CURSOR_SHARING。

SQL> select sum(pinhits)/sum(pins)*100 from v$librarycache;
SUM(PINHITS)/SUM(PINS)*100
--------------------------
          98.2787413813059
SQL> select sum(pinhits-reloads)/sum(pins)*100 from v$librarycache;
SUM(PINHITS-RELOADS)/SUM(PINS)
------------------------------
              98.0597157838185

最好的方式:

select sum(pins) "Executions",
       sum(pinhits) "Hits",
       ((sum(pinhits) / sum(pins)) * 100) "PinHitRatio",
       sum(reloads) "Misses",
       ((sum(pins) / (sum(pins) + sum(reloads))) * 100) "RelHitRatio"
  from v$librarycache;



20161120173326225.png

查询 v$sql_bind_capture,看看 average binds 是否大于15 (issue):

select sql_id, count(*) bind_count
  from v$sql_bind_capture
 where child_number = 0
 group by sql_id
having count(*) > 20 order by count(*);



20161120173458972.png


确定需要固定的PL/SQL对象


的可用空间均成为许多零散的片段,而没有足够大的连续空间,这是共享池中的普遍现象。消除共享池错误的关键是理解哪些对象会引起问题。一旦知道了会引起潜在问题的PL/SQL对象,就可以在数据库启动时固定这个代码(这时共享池是完全连续的)。

select name, sharable_mem
  from v$db_object_cache
 where sharable_mem > 100000
   and type in ('PACKAGE', 'PACKAGE BODY', 'FUNCTION', 'PROCEDURE')
   and kept = 'NO';

20161120173646947.png


通过V$SQLAREA查找有问题的查询


V$SQLAREA视图提供了一种识别有潜在问题或者需要优化的SQL语句的方法,从而可通过减少磁盘的访问来优化数据库的综合性能。


select b.username username,
       a.disk_reads reads,
       a.executions exec,
       a.disk_reads / decode(a.executions, 0, 1, a.executions) rds_exec_ratio,
       a.command_type,
       a.sql_text Statement
  from v$sqlarea a, dba_users b
 where a.parsing_user_id = b.user_id
   and a.disk_reads > 100000
 order by a.disk_reads desc;


检查用户的当前操作及其使用的资源


V$SESSION和V$SQLTEXT连接就可以显示目前每一个会话正在执行的SQL语句。这在有些时候是极为有用的,例如DBA希望查看某一个给定的时间点上系统究竟执行了哪些操作。

select a.sid, a.username, s.sql_text
  from v$session a, v$sqltext s
 where a.sql_address = s.address
   and a.sql_hash_value = s.hash_value
 order by a.username, a.sid, s.piece;
select a.username,
       b.block_gets,
       b.consistent_gets,
       b.physical_reads,
       b.block_changes,
       b.consistent_changes
  from v$session a, v$sess_io b
 where a.sid = b.sid
 order by a.username;

查找磁盘I/O问题


视图V$DATAFILE、V$FILESTAT和V$DBA_DATA_FILES提供了数据库中所有数据文件和磁盘的文件I/O活动信息。理想情况下,物理的读和写应当平均分布。如果没有合理的配置系统,其综合性能就会受到影响。

select a.file#, a.name, a.status, a.bytes, b.phyrds, b.phywrts
  from v$datafile a, v$filestat b
 where a.file# = b.file#;

查询归档日志切换频率

select sequence#,to_char(first_time,'yyyymmdd_hh24:mi:ss')
firsttime,round((first_time-lag(first_time) over(order by first_time))*24*60,2) minutes from
v$log_history where first_time > sysdate - 3 order by first_time,minutes;


select sequence#,to_char(first_time,'yyyy-mm-dd hh24:mi:ss') First_time,First_change#,switch_change# from
v$loghist where first_time>sysdate-3 order by 1;


SELECT TO_CHAR(first_time, 'MM/DD') DAY,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '00', 1, 0)) H00,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '01', 1, 0)) H01,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '02', 1, 0)) H02,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '03', 1, 0)) H03,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '04', 1, 0)) H04,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '05', 1, 0)) H05,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '06', 1, 0)) H06,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '07', 1, 0)) H07,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '08', 1, 0)) H08,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '09', 1, 0)) H09,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '10', 1, 0)) H10,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '11', 1, 0)) H11,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '12', 1, 0)) H12,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '13', 1, 0)) H13,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '14', 1, 0)) H14,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '15', 1, 0)) H15,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '16', 1, 0)) H16,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '17', 1, 0)) H17,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '18', 1, 0)) H18,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '19', 1, 0)) H19,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '20', 1, 0)) H20,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '21', 1, 0)) H21,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '22', 1, 0)) H22,
SUM(DECODE(TO_CHAR(first_time, 'HH24'), '23', 1, 0)) H23,
COUNT(*) TOTAL
FROM (SELECT ROWNUM RN, FIRST_TIME FROM V$LOG_HISTORY WHERE first_time>sysdate-18
and FIRST_TIME>ADD_MONTHS(SYSDATE,-1) ORDER BY FIRST_TIME)
GROUP BY TO_CHAR(first_time, 'MM/DD')
ORDER BY MIN(RN);


查询lgwr进程写日志时每执行一次lgwr需要多少秒,在state是waiting的情况下,某个等待编号seq#下,seconds_in_wait达多少秒,就是lgwr进程写一次IO需要多少秒

select event, state, seq#, seconds_in_wait, program
  from v$session
 where program like '%LGWR%'
   and state = 'WAITING'

查询没有索引的表

Select table_name
  from user_tables
 where table_name not in (select table_name from user_indexes)
Select table_name
  from user_tables
 where table_name not in (select table_name from user_ind_columns)

查询7天的db time(db time=db cpu+io time+wait time不包含空闲等待)

WITH sysstat AS
 (select sn.begin_interval_time begin_interval_time,
         sn.end_interval_time end_interval_time,
         ss.stat_name stat_name,
         ss.value e_value,
         lag(ss.value, 1) over(order by ss.snap_id) b_value
    from dba_hist_sysstat ss, dba_hist_snapshot sn
   where trunc(sn.begin_interval_time) >= sysdate - 7
     and ss.snap_id = sn.snap_id
     and ss.dbid = sn.dbid
     and ss.instance_number = sn.instance_number
     and ss.dbid = (select dbid from v$database)
     and ss.instance_number = (select instance_number from v$instance)
     and ss.stat_name = 'DB time')
select to_char(BEGIN_INTERVAL_TIME, 'mm-dd hh24:mi') ||
       to_char(END_INTERVAL_TIME, ' hh24:mi') date_time,
       stat_name,
       round((e_value - nvl(b_value, 0)) /
             (extract(day from(end_interval_time - begin_interval_time)) * 24 * 60 * 60 +
             extract(hour from(end_interval_time - begin_interval_time)) * 60 * 60 +
             extract(minute from(end_interval_time - begin_interval_time)) * 60 +
             extract(second from(end_interval_time - begin_interval_time))),
             0) per_sec
  from sysstat
 where (e_value - nvl(b_value, 0)) > 0
   and nvl(b_value, 0) > 0


查询产生热块较多的对象

x$bh .tch(Touch)表示访问次数越高,热点快竞争问题就存在

SELECT e.owner, e.segment_name, e.segment_type
FROM dba_extents e,
(SELECT *
FROM (SELECT addr,ts#,file#,dbarfil,dbablk,tch
FROM x$bh
ORDER BY tch DESC)
WHERE ROWNUM < 11) b
WHERE e.relative_fno = b.dbarfil
AND e.block_id <= b.dbablk
AND e.block_id + e.blocks > b.dbablk;


导出AWR报告的SQL语句

select * from dba_hist_snapshot
select * from table(dbms_workload_repository.awr_report_html(DBID, INSTANCE_NUMBER, startsnapid,endsnapid))
select * from TABLE(DBMS_WORKLOAD_REPOSITORY.awr_diff_report_html(DBID, INSTANCE_NUMBER, startsnapid,endsnapid, DBID, INSTANCE_NUMBER, startsnapid,endsnapid));


查询某个SQL的执行计划


select a.hash_value,a.* from v$sql a where sql_id='0n4qfzbqfsjm3'
select * from table(dbms_xplan.display_cursor(v$sql.hash_value,0,'advanced'));

含顺序的

select * from table(xplan.display_cursor('v$sql.sql_id',0,'advanced'));


不过要先创建xplan包,再执行

SQL> CREATE PUBLIC SYNONYM XPLAN FOR SYS.XPLAN;
SQL> grant execute on sys.xplan to public;
相关文章
|
2月前
|
SQL Oracle 关系型数据库
解决大小写、保留字与特殊字符问题!Oracle双引号在SQL中的特殊应用
在Oracle数据库开发中,双引号的使用是一个重要但易被忽视的细节。本文全面解析了双引号在SQL中的特殊应用场景,包括解决标识符与保留字冲突、强制保留大小写、支持特殊字符和数字开头标识符等。同时提供了最佳实践建议,帮助开发者规避常见错误,提高代码可维护性和效率。
125 6
|
3月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
|
3月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】yashandb执行包含带oracle dblink表的sql时性能差
【YashanDB知识库】yashandb执行包含带oracle dblink表的sql时性能差
|
3月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
本文来自YashanDB官网,介绍如何处理Oracle客户端sql*plus中使用@@调用同级目录SQL脚本的场景。崖山数据库23.2.x.100已支持@@用法,但旧版本可通过Python脚本批量重写SQL文件,将@@替换为绝对路径。文章通过Oracle示例展示了具体用法,并提供Python脚本实现自动化处理,最后调整批处理脚本以适配YashanDB运行环境。
|
SQL 运维 监控
关系型数据库性能监控工具
【5月更文挑战第21天】
213 2
|
11月前
|
运维 监控 Java
(十)JVM成神路之线上故障排查、性能监控工具分析及各线上问题排错实战
经过前述九章的JVM知识学习后,咱们对于JVM的整体知识体系已经有了全面的认知。但前面的章节中,更多的是停留在理论上进行阐述,而本章节中则更多的会分析JVM的实战操作。
250 1
|
10月前
|
监控 Java 开发者
揭秘Struts 2性能监控:选对工具与方法,让你的应用跑得更快,赢在起跑线上!
【8月更文挑战第31天】在企业级应用开发中,性能监控对系统的稳定运行至关重要。针对流行的Java EE框架Struts 2,本文探讨了性能监控的工具与方法,包括商用的JProfiler、免费的VisualVM以及Struts 2自带的性能监控插件。通过示例代码展示了如何在实际项目中实施这些监控手段,帮助开发者发现和解决性能瓶颈,确保应用在高并发、高负载环境下稳定运行。选择合适的监控工具需综合考虑项目需求、成本、易用性和可扩展性等因素。
89 0
|
10月前
|
Java 开发者 前端开发
Struts 2、Spring MVC、Play Framework 上演巅峰之战,Web 开发的未来何去何从?
【8月更文挑战第31天】在Web应用开发中,Struts 2框架因强大功能和灵活配置备受青睐,但开发者常遇配置错误、类型转换失败、标签属性设置不当及异常处理等问题。本文通过实例解析常见难题与解决方案,如配置文件中遗漏`result`元素致页面跳转失败、日期格式不匹配需自定义转换器、`&lt;s:checkbox&gt;`标签缺少`label`属性致显示不全及Action中未捕获异常影响用户体验等,助您有效应对挑战。
156 0
|
10月前
|
SQL 监控 关系型数据库
SQL性能监控与调优工具的神奇之处:如何用最佳实践选择最适合你的那一个,让你的数据库飞起来?
【8月更文挑战第31天】在现代软件开发中,数据库性能监控与调优对应用稳定性至关重要。本文对比了数据库内置工具、第三方工具及云服务工具等几种常用SQL性能监控与调优工具,并通过示例代码展示了如何利用MySQL的EXPLAIN功能分析查询性能。选择最适合的工具需综合考虑功能需求、数据库类型及成本预算等因素。遵循了解工具功能、试用工具及定期维护工具等最佳实践,可帮助开发者更高效地管理和优化数据库性能,迎接未来软件开发中的挑战与机遇。
145 0
|
10月前
|
存储 监控 Ubuntu
完全交互式!易于使用的 Linux 性能监控工具
完全交互式!易于使用的 Linux 性能监控工具

热门文章

最新文章

推荐镜像

更多