这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3(2)

简介: 这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3

实验结果

常识性推理


在表 3 中,研究者与现有的各种规模的模型进行比较,并报告了相应论文中的数字。首先,LLaMA-65B 在所有报告的基准上都超过了 Chinchilla-70B,除了 BoolQ。同样,除了在 BoolQ 和 WinoGrande 上,这个模型在任何方面都超过了 PaLM540B。LLaMA-13B 模型在大多数基准上也超过了 GPT-3,尽管其体积小了 10 倍。



闭卷答题

表 4 展示了 NaturalQuestions 的性能,表 5 展示了 TriviaQA 的性能。在这两项基准测试中,LLaMA-65B 在零样本和少样本设置中都达到了最先进的性能。更重要的是,尽管 LLaMA-13B 是 GPT-3 和 Chinchilla 的五分之一到十分之一,但在这些基准测试中也同样备竞争力。该模型的推理过程是在单个 V100 GPU 上运行的。



阅读理解

研究者还在 RACE 阅读理解基准 (Lai et al., 2017) 上评估了模型。此处遵循 Brown et al. (2020) 的评估设置,表 6 展示了评估结果。在这些基准上,LLaMA-65B 与 PaLM-540B 具有竞争力,而且,LLaMA-13B 比 GPT-3 还高出几个百分点。


数学推理


在表 7 中,研究者将其与 PaLM 和 Minerva (Lewkowycz et al., 2022) 进行了对比。在 GSM8k 上,他们观察到 LLaMA65B 优于 Minerva-62B,尽管它没有在数学数据上进行过微调。


代码生成


如表 8 所示,对于类似的参数数量,LLaMA 的表现是优于其他一般模型的,如 LaMDA 和 PaLM,这些模型没有经过专门的代码训练或微调。在 HumanEval 和 MBPP 上,13B 以上参数的 LLaMA 超过了 LaMDA 137B。LLaMA 65B 也优于 PaLM 62B,即使它的训练时间更长。


大规模多任务语言理解


研究者使用基准所提供的例子,在 5-shot 的情况下评估模型,并在表 9 中展示了结果。在这个基准上,他们观察到 LLaMA-65B 在大多数领域都落后于 Chinchilla70B 和 PaLM-540B 平均几个百分点。一个潜在的解释是,研究者在预训练数据中使用了数量有限的书籍和学术论文,即 ArXiv、Gutenberg 和 Books3,总和只有 177GB,而这些模型是在高达 2TB 的书籍上训练的。Gopher、Chinchilla 和 PaLM 所使用的大量书籍也可以解释为什么 Gopher 在这个基准上的表现优于 GPT-3,而在其他基准上却不相上下。


训练期间的性能变化


在训练期间,研究者跟踪了 LLaMA 模型在一些问题回答和常识性基准上的表现,结果如图 2 所示。在大多数基准上,性能稳步提高,并与模型的训练困惑度呈正相关(见图 1)。



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
存储 算法 网络架构
问 ChatGPT 关于GPT的事情:压缩篇
问 ChatGPT 关于GPT的事情:压缩篇
71 0
|
6月前
|
PyTorch 调度 算法框架/工具
问 ChatGPT 关于GPT的事情:扩展篇
问 ChatGPT 关于GPT的事情:扩展篇
82 0
|
6月前
|
机器学习/深度学习 数据采集 人工智能
问 ChatGPT 关于 GPT 的事情:数据准备篇
问 ChatGPT 关于 GPT 的事情:数据准备篇
93 0
|
存储 人工智能 架构师
ChatGPT 与软件架构 (2) - 基于 Obsidian 和 GPT 实现解决方案架构自动化
ChatGPT 与软件架构 (2) - 基于 Obsidian 和 GPT 实现解决方案架构自动化
197 0
|
18天前
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
36 1
|
27天前
|
算法 搜索推荐 机器人
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
37 0
|
1月前
|
数据采集 自然语言处理 并行计算
ChatGPT高效提问—基础知识(GPT与ChatGPT)
ChatGPT高效提问—基础知识(GPT与ChatGPT)
|
2月前
|
人工智能 自然语言处理 文字识别
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
在7月4日举行的WAIC 2024科学前沿主论坛上,书生·浦语2.5正式发布,面向大模型研发与应用的全链条工具体系同时迎来升级。
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
|
3月前
|
人工智能 Java 语音技术
开源上新|FunASR离线文件转写GPU软件包1.0
开源上新|FunASR离线文件转写GPU软件包1.0
|
6月前
|
自然语言处理
Meta首发变色龙挑战GPT-4o,34B参数引领多模态革命!10万亿token训练刷新SOTA
【5月更文挑战第27天】Meta推出34B参数的多模态模型Chameleon,通过早期融合技术处理图像和文本,实现全面的多模态建模。在10万亿token的训练数据下,Chameleon在图像字幕生成和文本推理任务中刷新SOTA,展现出在混合模态生成和推理的潜力。然而,模型可能无法完全捕捉图像语义信息,且在某些特定任务上有优化空间。[论文链接](https://arxiv.org/pdf/2405.09818)
98 1