这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3(1)

简介: 这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3

这是Meta版ChatGPT雏形?开源、一块GPU就能跑,1/10参数量打败GPT-3

机器之心 2023-02-25 13:17 发表于北京

机器之心报道

编辑:张倩、蛋酱

具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达1750 亿),而且可以在单块V100 GPU上运行。


千亿、万亿参数的超大模型需要有人研究,十亿、百亿参数的大模型同样需要。


刚刚,Meta 首席 AI 科学家 Yann LeCun 宣布,他们「开源」了一个新的大模型系列 ——LLaMA(Large Language Model Meta AI),参数量从 70 亿到 650 亿不等。这些模型的性能非常优异:具有 130 亿参数的 LLaMA 模型「在大多数基准上」可以胜过 GPT-3( 参数量达 1750 亿),而且可以在单块 V100 GPU 上运行;而最大的 650 亿参数的 LLaMA 模型可以媲美谷歌的 Chinchilla-70B 和 PaLM-540B。



众所周知,参数是机器学习模型用来根据输入数据进行预测或分类的变量。语言模型中的参数数量是影响其性能的关键因素,较大的模型通常能够处理更复杂的任务并产生更连贯的输出,这被 Richard Sutton 称为「苦涩的教训」。在过去的几年里,各大科技巨头围绕千亿、万亿参数量的大模型展开了军备竞赛,大大提高了 AI 模型的性能。


但是,这种比拼「钞能力」的研究竞赛对于不在科技巨头工作的普通研究者来说并不友好,阻碍了他们对于大模型运行原理、潜在问题解决方案等问题的研究。而且,在实际应用中,更多的参数会占用更多的空间,并且需要更多的计算资源来运行,导致大模型应用成本居高不下。因此,如果一个模型可以用更少的参数获得与另一个模型相同的结果,则表示效率显著提高。这对于普通研究者来说非常友好,模型在现实环境中部署也会更容易。这便是 Meta 这项研究的意义所在。


「我现在认为,在一两年内,我们将在自己的(顶级)手机和笔记本电脑上运行具有 ChatGPT 相当一部分能力的语言模型,」独立人工智能研究员 Simon Willison 在分析 Meta 新 AI 模型的影响时写道。


为了训练该模型,同时满足开源和可复现等要求,Meta 只用了公开可用的数据集,这点不同于大多数依赖于非公开数据的大模型。那些模型往往是不开源的,属于大型科技巨头私有资产。为了提高模型性能,Meta 在更多的 token 上进行了训练:在 1.4 万亿 token 上训练了 LLaMA 65B 和 LLaMA 33B,最小的 LLaMA 7B 也用到了 1 万亿 token。

在推特上,LeCun 还展示了 LLaMA 模型续写文本的一些结果。模型被要求续写:「你知道 Yann LeCun 去年发行了一张说唱专辑吗?我们听了一下,我们的想法是这样的:____ 」



不过,在能否商用方面,Meta 博客和 LeCun 推特表述的差异引发了一些争议。



Meta 在博客中表示,为了保持完整性和防止滥用,他们将在非商业许可下发布他们的模型,重点是研究用例。该模型的访问权将被逐一授予学术研究人员,那些隶属于政府、民间团体和学术界的组织,以及全世界的工业研究实验室。感兴趣的人可以在以下链接中申请:


https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform



而 LeCun 则表示,Meta 致力于开放研究,在 GPL v3 许可下向研究界发布所有模型(GPL v3 允许商用)。



这一表述是颇具争议的,因为他没有说清楚这里的「模型」指的是代码还是权重,或者二者均有。在不少研究者看来,模型权重比代码重要得多。



对此,LeCun 解释说,在 GPL v3 许可下开放的是模型代码。



有人认为,这种程度的开放还算不上真正的「AI 民主化」。



目前,Meta 已经把论文上传了 arXiv,GitHub 库中也已经上传了一些内容,大家可以前去浏览。




研究概览


在大规模的文本语料库中训练的大型语言模型(LLMs)已经显示出它们有能力从文本 prompt 或少数样本中执行新的任务。在将模型扩展到足够大的规模时,这些少样本特性首次出现,从而催生了专注于进一步扩展这些模型的工作系列。


这些努力都是基于一个假设:更多的参数会带来更好的性能。然而,Hoffmann et al. (2022) 最近的工作表明,在给定的计算预算下,最好的性能不是由最大的模型实现的,而是由在更多的数据上训练的小模型实现的。


Hoffmann et al. (2022) 提出的 scaling laws 的目标是确定在特定的训练计算预算下,如何最好地缩放数据集和模型大小。然而,这个目标忽略了推理预算,而推理预算在大规模服务语言模型时变得至关重要。在这种情况下,可以给定一个目标性能水平,首选的模型不是训练速度最快的,而是推理速度最快的。尽管训练一个大的模型以达到一定的性能水平可能更便宜,但一个训练时间较长的小模型最终在推理方面会更便宜。例如,尽管 Hoffmann et al. (2022) 建议在 200B 的 tokens 上训练一个 10B 的模型,但研究者发现 7B 的模型的性能甚至在 1T 的 tokens 之后还能继续提高。

这项工作的重点是训练一系列语言模型,通过在比通常使用的更多的 token 上进行训练,在各种推理预算下达到最佳性能。由此产生的模型被称为 LLaMA,其参数范围从 7B 到 65B,与现有的最佳 LLM 相比,这一模型的性能具有竞争力。例如,尽管 LLaMA-13B 比 GPT-3 小 10 倍,但在大多数基准测试中都优于 GPT-3。


研究者表示,这个模型将有助于 LLM 的民主化研究,因为它可以在单个 GPU 上运行。在更高的规模上,LLaMA-65B 参数模型也能与最好的大型语言模型(如 Chinchilla 或 PaLM-540B)相媲美。

与 Chinchilla、PaLM 或 GPT-3 不同,该模型只使用公开可用的数据,使得这项工作与开源兼容,而大多数现有模型依赖的数据要么不公开可用、要么没有记录(例如 Books-2TB 或社交媒体对话)。当然也存在一些例外,特别是 OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) 和 GLM (Zeng et al., 2022), 但没有一个能与 PaLM-62B 或 Chinchilla 竞争。


本文的其余部分概述了研究者对 transformer 架构的修改以及训练方法。然后介绍了模型性能,并在一组标准基准上与其他大型语言模型进行了比较。最后,研究者使用了负责任的人工智能社区的一些最新基准,展示了模型中的偏见和毒性。


方法概述


研究者使用的训练方法与 (Brown et al., 2020)、(Chowdhery et al., 2022) 等此前工作中描述的方法相似,并受到 Chinchilla scaling laws (Hoffmann et al., 2022) 的启发。研究者使用了一个标准的优化器在大量的文本数据上训练大型 transformer。


预训练数据


如表 1 所示,这项研究的训练数据集是几个来源的混合物,涵盖了不同的领域。在大多数情况下,研究者重新使用了已经被用来训练其他大型语言模型的数据源,但此处的限制是只能使用公开可用的数据,并与开放资源兼容。数据的混合情况以及它们在训练集中所占的百分比如下:

  • 英语 CommonCrawl [67%];
  • C4 [15%];
  • Github [4.5%];
  • 维基百科 [4.5%];
  • Gutenberg 和 Books3 [4.5%];
  • ArXiv [2.5%] ;
  • Stack Exchange [2%]。


整个训练数据集在 token 化之后大约包含 1.4T 的 token。对于大多数训练数据,每个 token 在训练期间只使用一次,但维基百科和 Books 域除外,我们在这两个域上执行大约两个 epoch。


架构

基于最近关于大型语言模型的工作,这项研究同样使用了 transformer 架构。研究者借鉴了随后提出并在不同的模型中使用的各种改进,比如 PaLM。在论文中,研究者介绍了其与原始架构的主要区别:

  • 预归一化 [GPT3]。为了提高训练的稳定性,研究者对每个 transformer 子层的输入进行归一化,而不是对输出进行归一化。他们使用了 Zhang and Sennrich (2019) 提出的 RMSNorm 归一化函数。
  • SwiGLU 激活函数 [PaLM]。研究者用了 Shazeer (2020) 提出的 SwiGLU 激活函数取代了 ReLU 非线性以提高性能。他们分别使用 2D、3D、4D 的维度,而不是 PaLM 中的 4D。
  • 旋转嵌入 [GPTNeo]。研究者删除了绝对位置嵌入,在网络的每一层增加了 Su et al. (2021) 提出的旋转位置嵌入(RoPE)。不同模型的超参数细节可见表 2。





相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
116 4
|
17天前
|
人工智能 Python
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当
JoyCaption 是一款开源的图像提示词生成工具,支持多种生成模式和灵活的提示选项,适用于社交媒体、图像标注、内容创作等场景,帮助用户快速生成高质量图像描述。
89 21
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当
|
10天前
|
人工智能 语音技术 iOS开发
MiniCPM-o 2.6:面壁智能开源多模态大模型,仅8B参数量就能媲美GPT-4o,支持实时交互,在ipad等终端设备上运行
MiniCPM-o 2.6 是面壁智能开源的多模态大模型,支持视觉、语音和多模态直播,性能媲美GPT-4o,能够在端侧设备上高效运行。
251 10
MiniCPM-o 2.6:面壁智能开源多模态大模型,仅8B参数量就能媲美GPT-4o,支持实时交互,在ipad等终端设备上运行
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
MetaGPT开源自动生成智能体工作流,4.55%成本超GPT-4o
AFlow是由Jiayi Zhang等学者提出的一项新研究,发表于arXiv。它通过将工作流优化问题转化为代码表示空间中的搜索,并引入蒙特卡洛树搜索(MCTS)算法,实现了高效的工作流自动化生成与优化。在六个基准数据集上,AFlow性能比现有基线平均提高5.7%,并使小模型以较低成本超越GPT-4。尽管存在一些局限性,如通用性和计算复杂度,AFlow为降低大型语言模型应用成本提供了新思路,推动了人工智能技术的进步。论文地址:https://arxiv.org/abs/2410.10762。
72 27
|
1月前
|
数据采集 人工智能 数据可视化
InternVL 2.5,首个MMMU超过70%的开源模型,性能媲美GPT-4o
近期Internvl2.5发布,性能与GPT-4o和Claude-3.5-sonnet等领先的商业模型相媲美,成为首个在MMMU上超过70%的开源模型,通过链式思考(CoT)推理实现了3.7个百分点的提升,展示了强大的测试时间可扩展性潜力。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
开源版GPT-4o来了,AI大神Karpathy盛赞!67页技术报告全公开
【10月更文挑战第20天】近日,开源版GPT-4o的发布成为AI领域的焦点。作为GPT系列的最新成员,GPT-4o在性能和多模态数据处理方面实现了显著提升,得到了知名AI专家Andrej Karpathy的高度评价。该模型的开源特性将进一步促进AI研究的进展。
157 3
|
3月前
|
人工智能 语音技术 UED
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
121 1
|
3月前
|
人工智能 编解码 文字识别
阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!
阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。
|
3月前
|
算法 搜索推荐 机器人
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
60 0
|
3月前
|
数据采集 自然语言处理 并行计算
ChatGPT高效提问—基础知识(GPT与ChatGPT)
ChatGPT高效提问—基础知识(GPT与ChatGPT)
54 0

热门文章

最新文章