7 Papers | AAAI 2023杰出论文奖;AI生成文本检测方法综述

简介: 7 Papers | AAAI 2023杰出论文奖;AI生成文本检测方法综述


本周论文包括获得 AAAI 2023 杰出论文奖的 CowClip 算法,以及现有 AI 生成文本检测方法的全面技术介绍


目录:

CowClip: Reducing CTR Prediction Model Training Time from 12 hours to 10 minutes on 1 GPU

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editings

A Survey on Transformers in Reinforcement Learning

Rethinking with Retrieval: Faithful Large Language Model Inference

The Science of Detecting LLM-Generated Texts

Quantum machine learning beyond kernel methods

Organic reaction mechanism classification using machine learning

论文 1:CowClip: Reducing CTR Prediction Model Training Time from 12 hours to 10 minutes on 1 GPU



摘要:新加坡国立大学和字节跳动的研究者通过数学分析证明了在扩大批次时,对于不常见特征的学习率使用传统的学习率放缩,会影响学习的稳定性。

此外,研究者提出 CowClip 的梯度裁剪算法,可以简单有效扩展批大小。通过在 4 个 CTR 预估模型和 2 个数据集上进行测试,团队成功将原始批大小扩大了 128 倍,并没有造成精度损失。尤其是在 DeepFM 上,通过将批大小从 1K 扩大到 128K,CowClip 实现 AUC 超过 0.1% 的改进。在单块 V100 GPU 上,将训练时长从原本的 12 小时,缩短至只需 10 分钟,训练提速 72 倍。

CowClip 算法展示。

推荐:本文获得 AAAI 2023 杰出论文奖(Distinguised Paper)。

论文 2:DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editings


摘要:表情编辑技术在特效和修图场景有着广泛的应用。此前,剪映、醒图等 app 上的一键变笑脸模板一经上线就立刻成为出圈爆款;在抖音上,这一特效还引发了热烈的话题讨论,「笑得很好下次别笑了」一度登顶抖音话题热榜。

近日, 在 AI 领域的顶级会议 AAAI 2023 上,来自字节跳动智能创作团队的 3 篇关于表情编辑 GAN 技术的论文入选,揭示了上述爆款特效背后的技术实现方法。

本文中,团队在第一阶段利用预训练的 3D 人脸重建模型,提取 3DMM 表情系数并注入到 StyleGAN 的 w 空间。同时,渲染出 3D shape 用作约束条件,训练特定人脸表情的生成。第一阶段训练完成就可以生产大量的配对数据,训练服务端或移动端的 pix2pix 模型,实现特定表情的编辑。


推荐:一键定制人脸表情没那么难!字节跳动人像编辑 GAN 技术取得突破。

论文 3:A Survey on Transformers in Reinforcement Learning


摘要:为了更好地推动强化学习领域发展,清华大学、北京大学、智源人工智能研究院和腾讯公司的研究者联合发表了一篇关于强化学习中 Transformer(TransformRL)的综述论文,归纳总结了当前的已有方法和面临的挑战,并讨论了未来的发展方向,作者认为 TransformRL 将在激发强化学习潜力方面发挥重要作用。

TransformRL 图示。

推荐:强化学习中的 Transformer 发展到哪一步了?清华、北大等联合发布 TransformRL 综述。

论文 4:Rethinking with Retrieval: Faithful Large Language Model Inference


摘要:大型语言模型 (LLM) 已通过 In-context Learning 在各种复杂任务上展现出卓越的性能,并且无需针对特定任务进行训练或微调,近期 prompt 和解码方面取得的进展也使 LLM 解决复杂推理任务变成了现实。

然而,LLM 可能会存储过时、不全面或不正确的知识,要将 LLM 成功部署到实际应用中,外部知识来源(例如维基百科)至关重要。此前,人们尝试将知识用于较小的语言模型 (LM),例如 T5、BERT 和 RoBERTa,但这些方法通常需要额外的训练或微调,成本高昂,对于 LLM 来说完全不切实际。

罗彻斯特大学、腾讯 AI Lab 和宾夕法尼亚大学的研究者联合提出了一种称为 Rethinking with Retrieval (RR) 的后处理方法,以在 LLM 中利用外部知识。

在三项推理任务上使用 GPT-3 的不同方法的性能对比。

推荐:禁止大型语言模型胡编乱造,给点外部知识,推理靠谱的很。

论文 5:The Science of Detecting LLM-Generated Texts


摘要:自然语言生成 (NLG) 技术的最新进展显着提高了大型语言模型生成文本的多样性、控制力和质量。一个值得注意的例子是 OpenAI 的 ChatGPT,它在回答问题、撰写电子邮件、论文和代码等任务中展示了卓越的性能。然而,这种新发现的高效生成文本的能力也引起了人们对检测和防止大型语言模型在网络钓鱼、虚假信息 和学术造假等任务中滥用的担忧。

例如,由于担心学生利用 ChatGPT 写作业,纽约公立学校全面禁止了 ChatGPT 的使用,媒体也对大型语言模型产生的假新闻发出警告。这些对大型语言模型 滥用的担忧严重阻碍了自然语言生成在媒体和教育等重要领域的应用。

最近关于是否可以正确检测大型语言模型生成的文本以及如何检测的讨论越来越多,这篇文章对现有检测方法进行了全面的技术介绍。

大型语言模型生成的文本检测分类学。

推荐:冒充人类作者,ChatGPT 等滥用引担忧,一文综述 AI 生成文本检测方法。

论文 6:Quantum machine learning beyond kernel methods


摘要:基于参数化量子电路的机器学习算法是近期在嘈杂的量子计算机上应用的主要候选者。在这个方向上,已经引入和广泛研究了各种类型的量子机器学习模型。然而,我们对这些模型如何相互比较以及与经典模型进行比较的理解仍然有限。

近日,来自奥地利因斯布鲁克大学的研究团队确定了一个建设性框架,该框架捕获所有基于参数化量子电路的标准模型:线性量子模型。

研究人员展示了使用量子信息论中的工具如何将数据重新上传电路有效地映射到量子希尔伯特空间中线性模型的更简单图像中。此外,根据量子比特数和需要学习的数据量来分析这些模型的实验相关资源需求。基于经典机器学习的最新结果,证明线性量子模型必须使用比数据重新上传模型多得多的量子比特才能解决某些学习任务,而核方法还需要多得多的数据点。研究结果提供了对量子机器学习模型的更全面的了解,以及对不同模型与 NISQ 约束的兼容性的见解。

这项工作中研究的量子机器学习模型。

推荐:超越核方法的量子机器学习,量子学习模型的统一框架。

论文 7:Organic reaction mechanism classification using machine learning


摘要:化学反应的发现不仅受到获得实验数据的速度的影响,还受到化学家理解这些数据的难易程度的影响。揭示新的催化反应的机理基础是一个特别复杂的问题,通常需要计算和物理有机化学的专业知识。然而,研究催化反应很重要,因为它们代表了最有效的化学过程。

近日,英国曼彻斯特大学(UoM)化学系的 Burés 和 Larrosa 报告了一种机器学习模型,展示了可以训练深度神经网络模型来分析普通动力学数据并自动阐明相应的机理类别,而无需任何额外的用户输入。该模型以出色的精度识别各种类型的机理。

研究结果表明,AI 引导的机理分类是一种强大的新工具,可以简化和自动化机理阐明。预计这项工作将进一步推动全自动有机反应发现和开发的发展。该研究发布在《Nature》上。

动力学分析的相关性和最新技术。

推荐:机器学习模型以出色的精度进行有机反应机理分类。

相关文章
|
11天前
|
人工智能 API 语音技术
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
WhisperChain 是一款基于 Whisper.cpp 和 LangChain 的开源语音识别工具,能够实时将语音转换为文本,并自动清理和优化文本内容,适用于会议记录、写作辅助等多种场景。
499 2
WhisperChain:开源 AI 实时语音转文字工具!自动消噪优化文本,效率翻倍
|
1月前
|
机器学习/深度学习 人工智能 计算机视觉
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
MILS 是 Meta AI 推出的零样本生成高质量多模态描述方法,支持图像、视频和音频的描述生成,无需额外训练。
137 34
MILS:无需对LLM进行额外训练就能处理多模态任务,Meta AI提出零样本生成多模态描述方法
|
1月前
|
人工智能 自然语言处理 搜索推荐
浙大通义联手推出慢思考长文本生成框架OmniThink,让AI写作突破知识边界
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。
225 46
|
19天前
|
人工智能 数据可视化
文本、图像、点云任意模态输入,AI能够一键生成高质量CAD模型了
《CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM》提出了一种新型系统CAD-MLLM,能够根据文本、图像、点云或其组合生成高质量的CAD模型。该系统基于大型语言模型(LLM),通过多模态数据对齐和渐进式训练策略,实现了高效的CAD模型生成。作者创建了首个包含文本、图像、点云和命令序列的多模态数据集Omni-CAD,包含约450K个实例。实验表明,CAD-MLLM在多个任务上表现出色,特别是在点云条件生成任务中显著优于现有方法。未来工作将聚焦于提升计算效率、增加数据多样性及探索新模态。
179 18
|
13天前
|
人工智能 编解码 测试技术
阿里云通义千问发布多款AI大模型 多模态、长文本能力全面升级!
阿里云通义千问发布多款AI大模型 多模态、长文本能力全面升级!
|
2月前
|
人工智能 供应链 PyTorch
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
TimesFM 2.0 是谷歌研究团队开源的时间序列预测模型,支持长达2048个时间点的单变量预测,具备零样本学习能力,适用于零售、金融、交通等多个领域。
298 23
TimesFM 2.0:用 AI 预测流量、销量和金融市场等走势!谷歌开源超越统计方法的预测模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
RealtimeSTT 是一款开源的实时语音转文本库,支持低延迟应用,具备语音活动检测、唤醒词激活等功能,适用于语音助手、实时字幕等场景。
412 18
三行代码实现实时语音转文本,支持自动断句和语音唤醒,用 RealtimeSTT 轻松创建高效语音 AI 助手
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
357 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
VideoWorld 是由字节跳动、北京交通大学和中国科学技术大学联合推出的自回归视频生成模型,能够从未标注的视频数据中学习复杂知识,支持长期推理和规划任务。
456 8
VideoWorld:字节开源自回归视频生成模型,支持输入视频指导AI生成视频!弥补文本生成视频的短板
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪
Emotion-LLaMA 是一款多模态情绪识别与推理模型,融合音频、视觉和文本输入,通过特定情绪编码器整合信息,广泛应用于人机交互、教育、心理健康等领域。
178 11
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪

热门文章

最新文章