7 Papers | 超越GPT 3.5的小模型;对ChatGPT摸底考试

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 7 Papers | 超越GPT 3.5的小模型;对ChatGPT摸底考试


本周论文包括2D 图像脑补 3D 人体;马逊发布超越 GPT 3.5 的小模型等研究。


目录

  1. Structure and Content-Guided Video Synthesis with Diffusion Models
  2. EVA3D: Compositional 3D Human Generation from 2D Image Collections
  3. Multimodal Chain-of-Thought Reasoning in Language Models
  4. Is ChatGPT a General-Purpose Natural Language Processing Task Solver?
  5. Toolformer: Language Models Can Teach Themselves to Use Tools
  6. Looped Transformers as Programmable Computers
  7. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models


论文 1:Structure and Content-Guided Video Synthesis with Diffusion Models


摘要:近日,曾参与创建 Stable Diffusion 的 Runway 公司推出了一个新的人工智能模型「Gen-1」,该模型通过应用文本 prompt 或参考图像指定的任何风格,可将现有视频转化为新视频。

具体来说,Gen-1 支持几种编辑模式:

1、风格化。将任何图像或 prompt 的风格转移到视频的每一帧。2、故事板。将模型变成完全风格化和动画的渲染。3、遮罩。分离视频中的主题并使用简单的文本 prompt 对其进行修改。4、渲染。通过应用输入图像或 prompt,将无纹理渲染变成逼真的输出。5、定制化。通过自定义模型以获得更高保真度的结果,释放 Gen-1 的全部功能。

在该公司官方网站上发布的 demo 中,展示了 Gen-1 如何丝滑地更改视频风格,来看几个示例。

比如将「街道上的人」变成「粘土木偶」,只需要一行 prompt:


推荐:从文本生成图像,再到给视频加特效,下一个 AIGC 爆发点要出现了吗?

论文 2:EVA3D: Compositional 3D Human Generation from 2D Image Collections


摘要:在 ICLR 2023 上,南洋理工大学 - 商汤科技联合研究中心 S-Lab 团队提出了首个从二维图像集合中学习高分辨率三维人体生成的方法 EVA3D。得益于 NeRF 提供的可微渲染,近期的三维生成模型已经在静止物体上达到了很惊艳的效果。但是在人体这种更加复杂且可形变的类别上,三维生成依旧有很大的挑战。本文提出了一个高效的组合的人体 NeRF 表达,实现了高分辨率(512x256)的三维人体生成,并且没有使用超分模型。EVA3D 在四个大型人体数据集上均大幅超越了已有方案,代码已开源。

推荐:2D 图像脑补 3D 人体,衣服随便搭,还能改动作。

论文 3:Multimodal Chain-of-Thought Reasoning in Language Models


摘要:众所周知,ChatGPT 是在 GPT-3.5 系列模型的基础上微调而来的,我们看到很多研究也在紧随其后紧追慢赶,但是,与 ChatGPT 相比,他们的新研究效果到底有多好?近日,亚马逊发布的一篇论文提出了包含视觉特征的 Multimodal-CoT,该架构在参数量小于 10 亿的情况下,在 ScienceQA 基准测试中,比 GPT-3.5 高出 16 个百分点 (75.17%→91.68%),甚至超过了许多人类。

下图为 Multimodal CoT 两阶段过程:使用文本(问题 + 上下文)和视觉特征来产生逻辑依据。

推荐:超越 GPT 3.5 的小模型来了!

论文 4:Is ChatGPT a General-Purpose Natural Language Processing Task Solver?


摘要:ChatGPT 真的是「通才」吗?单拎出哪项能力都能完胜其他模型吗?哪些任务是 ChatGPT 擅长的,哪些不是?为了系统地探索这些问题,南洋理工大学博士生 Chengwei Qin、斯坦福大学计算机科学助理教授杨笛一等人进行了大量实验。

该研究主要比较了 ChatGPT 和 GPT-3.5 (textdavinci-003) 在不同任务下的 zero-shot 学习性能。

推荐:ChatGPT 真的是「通才」吗?杨笛一等人给它来了个摸底考试。

论文 5:Toolformer: Language Models Can Teach Themselves to Use Tools


摘要:在自然语言处理任务中,大型语言模型在零样本和少样本学习方面取得了令人印象深刻的结果。然而,所有模型都存在固有的局限性,往往只能通过进一步扩展来部分解决。具体来讲,模型的局限性包括无法访问最新信息、会对事实产生「信息幻觉」、低资源语言理解困难、缺乏进行精确计算的数学技能等等。

解决这些问题的一种简单方法就是给模型配备外部工具,如搜索引擎、计算器或日历。然而,现有方法通常依赖于大量的人工注释,或将工具的使用限制在特定的任务设置下,使得语言模型与外部工具的结合使用难以推广。为了打破这种瓶颈,近期 Meta AI 提出了一种称为 Toolformer 的新方法,使得语言模型学会「使用」各种外部工具。如下为 Toolformer 的典型预测。

推荐:语言模型自己学会用搜索引擎了?Meta AI 提出 API 调用自监督学习方法 Toolformer。

论文 6:Looped Transformers as Programmable Computers


摘要:在本文中,作者展示了 Transformer 网络可以通过使用特定权重对它们进行硬编码并将它们置于一个循环中来模拟复杂的算法和程序。作者通过对 Attention 进行逆向工程来模拟基本计算块来做到这一点,例如对输入序列的编辑操作、非线性函数、函数调用、程序计数器和条件分支。作者的论文证明了使用单个循环或递归将 Transformer 的输出序列连接回其输入的重要性,从而避免对深度模型的需要。如下为用作实现小型指令集计算机构建块的三个 Transformer 块的示意图。

推荐:作者展示了 Transformer 网络可以通过使用特定权重对它们进行硬编码并将它们置于一个循环中来模拟复杂的算法和程序。

论文 7:AudioLDM: Text-to-Audio Generation with Latent Diffusion Models


摘要:给出一段文字,人工智能就可以生成音乐,语音,各种音效,甚至是想象的声音,比如黑洞和激光枪。最近由英国萨里大学和帝国理工学院联合推出的 AudioLDM,在发布之后迅速火遍国外,一周内在推特上收获了近 300 次的转发和 1500 次的点赞。在模型开源第二天,AudioLDM 就冲上了 Hugging Face 热搜榜第一名,并在一周内进入了 Hugging Face 最受喜欢的前 40 名应用榜单(共约 25000),也迅速出现了很多基于 AudioLDM 的衍生工作。


推荐:开源模型、单卡训练,带你了解爆火的文本指导音频生成技术 AudioLDM。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
180 2
|
3月前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
107 4
|
1月前
|
数据采集 人工智能 数据可视化
InternVL 2.5,首个MMMU超过70%的开源模型,性能媲美GPT-4o
近期Internvl2.5发布,性能与GPT-4o和Claude-3.5-sonnet等领先的商业模型相媲美,成为首个在MMMU上超过70%的开源模型,通过链式思考(CoT)推理实现了3.7个百分点的提升,展示了强大的测试时间可扩展性潜力。
|
18天前
|
人工智能 自然语言处理 机器人
OpenAI推出具有图像上传和分析功能的完整o1模型,并首次推出ChatGPT Pro
OpenAI推出具有图像上传和分析功能的完整o1模型,并首次推出ChatGPT Pro
|
2月前
|
自然语言处理 搜索推荐 Serverless
基于函数计算部署GPT-Sovits模型实现语音生成
阿里云开发者社区邀请您参加“基于函数计算部署GPT-Sovits模型实现语音生成”活动。完成指定任务即可获得收纳箱一个。活动时间从即日起至2024年12月13日24:00:00。快来报名吧!
|
2月前
|
弹性计算 自然语言处理 搜索推荐
活动实践 | 基于函数计算部署GPT-Sovits模型实现语音生成
通过阿里云函数计算部署GPT-Sovits模型,可快速实现个性化声音的文本转语音服务。仅需少量声音样本,即可生成高度仿真的语音。用户无需关注服务器维护与环境配置,享受按量付费及弹性伸缩的优势,轻松部署并体验高质量的语音合成服务。
|
3月前
|
算法 搜索推荐 机器人
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
【ChatGPT】参加计算机科学考试(GPT-4对比GPT-3.5)
59 0
|
3月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
59 0
|
3月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
104 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(下)
【AI大模型】ChatGPT模型原理介绍(下)

热门文章

最新文章