小白上手AIGC-基于PAI-DSW部署Stable Diffusion文生图Lora模型

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 讲述基于PAI-DSW部署Stable Diffusion文生图Lora模型以及文生图效果展示

前言

在上一篇博文小白上手AIGC-基于FC部署stable-diffusion 中,说到基于函数计算应用模板部署AIGC文生图应用,部署后实验的参数比较局限,可选参数不多,因此不太能更好的深入体验AIGC,这一篇博文我们部署一款基于PAI-DSW部署Stable Diffusion文生图Lora模型,希望可以达到我们想要的效果。拭目以待...

资源准备

开启体验服务

再开始实验之前,我们需要先开通交互式建模PAI-DSW 的服务,趁着阿里云推出的免费试用的机会,赶快来体验吧,试用中心地址:阿里云免费试用 找到机器学习平台PAI的类别,点击【立即试用】

image.png

开通交互式建模PAI-DSW服务之后,需要创建默认工作空间,

创建工作空间

创建默认工作空间,官方文档地址:开通并创建默认工作空间,比如选择地域杭州

image.png

点击【开通PAI并创建默认工作空间】,完成授权及勾选操作

image.png

点击【确认开通并创建默认工作空间】完成默认工作空间的创建。

部署服务

回到PAI控制台首页,可以在工作空间列表中看到我们刚才创建的默认工作空间信息,

image.png

在控制台选择菜单【交互式建模(DSW)】

image.png

创建DSW实例

这里会默认选中我们刚才创建的工作空间,点击【进入DSW】

image.png

点击【创建实例】

image.png

输入实例名称,点击tab 【GPU规格】,选择规格【ecs.gn7i-c8g1.2xlarge

image.png

继续选择镜像【stable-diffusion-webui-env:pytorch1.13-gpu-py310-cu117-ubuntu22.04】点击【下一步】

image.png

确认完信息之后点击【创建实例】

image.png

等待实例资源准备后启动成功。

安装Diffusers

下载Diffusers开源库并安装,为后续下载stable-diffusion-webui开源库做准备。

点击【打开】

image.png打开在线编辑工具Notebook,选择【Python3】如图

image.png

输入命令下载Diffusers开源库

! git clone https://github.com/huggingface/diffusers

下载开源库过程中,如果遇到超时的情况可以再次执行下载即可

image.png

验证一下是否安装成功

import diffusers

image.png

配置accelerate,选择Terminal输入配置命令

accelerate config

确认之后,通过键盘上下键选中This machine并确认

image.png

然后在选择multi-GPU

image.png

选中之后确认,后面的一次按截图的内容选择即可

image.png

最后选中fp16 点击确认

image.png

此时可以看到accelerate配置完成了。下面继续回到python3页面安装文生图算法相关依赖库

! cd diffusers/examples/text_to_image && pip install -r requirements.txt

image.png

下面开始下载stable-diffusion-webui开源库,执行命令

! git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git && \
cd stable-diffusion-webui && \
git checkout a9fed7c364061ae6efb37f797b6b522cb3cf7aa2
! cd stable-diffusion-webui && mkdir-p repositories && cd repositories && \
git clone https://github.com/sczhou/CodeFormer.git

下载过程中如果遇到这种情况,再次执行以下命令就可以了

image.png

最后下载完成。继续下载示例数据集,后续会使用该数据集进行模型训练。执行如下命令

! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/cloth_train_example.tar.gz && tar -xvf cloth_train_example.tar.gz
! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/train_text_to_image_lora.py

数据集下载完成之后可以看到

image.png

查看一下示例服装,执行命令

from PIL import Image
display(Image.open("cloth_train_example/train/20230407174450.jpg"))

执行结果可以看到

image.png

继续下载预训练模型并转化成diffusers格式,执行命令

! cd stable-diffusion-webui/models/Stable-diffusion && wget-c https://huggingface.co/naonovn/chilloutmix_NiPrunedFp32Fix/resolve/main/chilloutmix_NiPrunedFp32Fix.safetensors -O chilloutmix_NiPrunedFp32Fix.safetensors
! python diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py \
--checkpoint_path=stable-diffusion-webui/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors \
--dump_path=chilloutmix-ni --from_safetensors

执行结果如图

image.png

执行命令,设置num_train_epochs为200进行lora模型的训练

! exportMODEL_NAME="chilloutmix-ni" && \
exportDATASET_NAME="cloth_train_example" && \
accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--dataset_name=$DATASET_NAME--caption_column="text" \
--width=640--height=768--random_flip \
--train_batch_size=1 \
--num_train_epochs=200--checkpointing_steps=5000 \
--learning_rate=1e-04 --lr_scheduler="constant"--lr_warmup_steps=0 \
--seed=42 \
--output_dir="cloth-model-lora" \
--validation_prompt="cloth1"--validation_epochs=100

训练完成之后可以看到

image.png

然后将lora模型转化成WebUI支持格式并拷贝到WebUI所在目录

! wget-c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/convert-to-safetensors.py
! python convert-to-safetensors.py --file='cloth-model-lora/pytorch_lora_weights.bin'! mkdir stable-diffusion-webui/models/Lora
! cp cloth-model-lora/pytorch_lora_weights_converted.safetensors stable-diffusion-webui/models/Lora/cloth_lora_weights.safetensors

执行结果如图

image.png

准备其他模型文件

! mkdir stable-diffusion-webui/models/Codeformer
! cd stable-diffusion-webui/repositories/CodeFormer/weights/facelib/ && \
wget-c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/detection_Resnet50_Final.pth && \
wget-c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/parsing_parsenet.pth
! cd stable-diffusion-webui/models/Codeformer && wget-c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/codeformer-v0.1.0.pth
! cd stable-diffusion-webui/embeddings && wget-c http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/datasets/try_on/ng_deepnegative_v1_75t.pt
! cd stable-diffusion-webui/models/Lora && wget-c https://huggingface.co/Kanbara/doll-likeness-series/resolve/main/koreanDollLikeness_v10.safetensors

执行结果如图

image.png

启动WebUI

Notebook中,执行如下命令,启动WebUI

! cd stable-diffusion-webui && python -m venv --system-site-packages--symlinks venv
! cd stable-diffusion-webui && \
sed-i's/can_run_as_root=0/can_run_as_root=1/g' webui.sh && \
  ./webui.sh --no-download-sd-model--xformers

这个命令执行过程中可能会遇到多种情况的错误,每次遇到错误情况时重新执行命令即可,错误情况比如

image.png

或者是

image.png

最后执行成功的界面如下

image.png

启动成功之后单机链接地址进入模型训练页面

image.png

输入待生成模型文本等待生成结果。

写在最后

整体来说,本次操作的时间会耗时比较久,两个小时左右,在部署过程中可能会遇到各种不成功的情况,不用担心,再次执行命令即可。

另外,对于AIGC文生图的操作,对于生成图像与文字描述是否匹配,这个主要还是取决于你当前使用的文生图模型的训练程度,模型训练的结果直接决定了AIGC文生图的准确度,由此及彼的来看,对于AIGC文生图、图生文、文生视频、文生音频等的操作,随着模型训练的不断丰富话,后续想要生成更加准确的切合文字内容的图片及视频都是很有可能的,目前一直希望可以准确生成《少年闰土》中的一段情节

:深蓝的天空中挂着一轮金黄的圆月,下面是海边的沙地,都种着一望无际的碧绿的西瓜。其间有一个十一二岁的少年,项戴银圈,手捏一柄钢叉,向一匹猹用力地刺去。那猹却将身一扭,反从他的胯下逃走了。多方查找还没找到比较生成图比较接近的,后续会继续尝试基于其他云产品的AIGC服务。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
16天前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
3月前
|
Serverless 开发工具 开发者
活动实践 | 西游再现,函数计算一键部署 Flux 超写实文生图模型部署
这些图片展示了阿里巴巴云开发者生态的多个方面,包括开发工具、技术文档、社区交流、培训认证等内容,旨在为开发者提供全方位的支持和服务。
|
7月前
|
存储 JSON Serverless
西游再现,函数计算一键部署 Flux 超写实文生图模型部署
参与体验活动生成西游人物图像,既有机会赢取好礼!本次实验在函数计算中内置了flux.1-dev-fp8大模型,通过函数计算+Serverless应用中心一键部署Flux模型,快速生成超写实图像。首次开通用户可领取免费试用额度,部署过程简单高效。完成部署后,您可以通过修改提示词生成各种风格的图像,体验Flux模型的强大绘图能力。
西游再现,函数计算一键部署 Flux 超写实文生图模型部署
|
6月前
|
JSON 人工智能 物联网
西游再现,一键部署 Flux 文生图大模型生成西游人物
从花果山的灵石出世,到取经路上的九九八十一难,再到大闹天宫的惊心动魄……这些耳熟能详的西游场景,如今都能通过 Flux 模型,以超乎想象的细节和真实感呈现在你眼前。本次实验在函数计算中内置的 flux.1-dev-fp8 大模型,搭配 Lora 模型,无需复杂的配置,一键部署,你就能成为这场视觉盛宴的创造者。
451 17
|
6月前
|
JSON Serverless 数据格式
体验函数计算一键部署 Flux 超写实文生图模型部署
体验函数计算一键部署 Flux 超写实文生图模型部署
|
6月前
|
JSON 物联网 Serverless
|
7月前
|
算法 物联网 Serverless
一键打造你的定制化AIGC文生图工具
【8月更文挑战第2天】一键打造你的定制化AIGC文生图工具
233 0
|
4月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
230 6
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
14天前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理

热门文章

最新文章

相关产品

  • 人工智能平台 PAI