南大《探索数据的奥秘》课件示例代码笔记13

简介: 南大《探索数据的奥秘》课件示例代码笔记13

Chp7-3

2019 年 12 月 23 日

In [21]: import pandas as pd
import numpy as np
from scipy import stats
from matplotlib import pyplot as plt
my_data = pd.read_csv("C:\Python\Scripts\my_data\german_credit_data_dataset.csv
")#,dtype=str)
print(my_data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):
checking_account_status 1000 non-null object
duration 1000 non-null int64
credit_history 1000 non-null object
purpose 1000 non-null object
credit_amount 1000 non-null float64
savings 1000 non-null object
present_employment 1000 non-null object
installment_rate 1000 non-null float64
personal 1000 non-null object
other_debtors 1000 non-null object
present_residence 1000 non-null float64
property 1000 non-null object
age 1000 non-null float64
other_installment_plans 1000 non-null object
housing 1000 non-null object
existing_credits 1000 non-null float64
job 1000 non-null object
dependents 1000 non-null int64
telephone 1000 non-null object
foreign_worker 1000 non-null object
customer_type 1000 non-null int64
dtypes: float64(5), int64(3), object(13)
memory usage: 164.1+ KB
None
In [52]: from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
feature_col=['checking_account_status','personal']
X=my_data[['customer_type','credit_amount']] #
for n,my_str in enumerate(feature_col):
my_dummy=pd.get_dummies(my_data[[my_str]],prefix=my_str)
X=pd.concat([X,my_dummy],axis=1)
XX_feature=['credit_amount','checking_account_status_A14','personal_A91',
'personal_A92','personal_A93','personal_A94']
XX=X[XX_feature]
Y=X['customer_type']
X_train,X_test,Y_train,Y_test=train_test_split(XX,Y,test_size=0.2,random_state=0)
my_tree=DecisionTreeClassifier(max_depth=3)
my_tree.fit(X_train,Y_train)
print('分类结果为: ',my_tree.predict(X_test),'\n')
print('平均准确率为: ',my_tree.score(X_test,Y_test))
分类结果为: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1]
平均准确率为: 0.71
In [54]: pd.DataFrame({'feature':XX.columns,'importance':my_tree.feature_importances_})
Out[54]: feature importance
0 credit_amount 0.314532
1 checking_account_status_A14 0.671787
2 personal_A91 0.013680
3 personal_A92 0.000000
4 personal_A93 0.000000
5 personal_A94 0.000000
In [55]: from sklearn import tree
import matplotlib.pyplot as plt
plt.figure(figsize=(18,12))
tree.plot_tree(my_tree,fontsize=12,feature_names=XX.columns,class_names=['Good','Bad
'])
plt.savefig('my_tree')

20210611101612856.png

目录
相关文章
耀世升级发布!阿里第三版Java多线程核心技术手册PDF全彩版
本篇将会带着大家去全面剖析多线程编程的核心库、方法、原理,利用案例方式,透彻讲解高并发本质与应对方法!同时这份PDF全部以Demo式案例来讲解技术点的实现,使读者看到代码及 运行结果后就可以知道该项目要解决的是什么问题,类似于网络中博客的风格,让读者用最短的时间学习知识点,明白知识点如何应用,以及在使用时要避免什么,从而快速学习并解决问题!
南大《探索数据的奥秘》课件示例代码笔记01
南大《探索数据的奥秘》课件示例代码笔记01
64 0
南大《探索数据的奥秘》课件示例代码笔记18
南大《探索数据的奥秘》课件示例代码笔记18
68 0
南大《探索数据的奥秘》课件示例代码笔记16
南大《探索数据的奥秘》课件示例代码笔记16
60 0
南大《探索数据的奥秘》课件示例代码笔记10
南大《探索数据的奥秘》课件示例代码笔记10
90 0
南大《探索数据的奥秘》课件示例代码笔记15
南大《探索数据的奥秘》课件示例代码笔记15
57 0
南大《探索数据的奥秘》课件示例代码笔记03
南大《探索数据的奥秘》课件示例代码笔记03
66 0
南大《探索数据的奥秘》课件示例代码笔记02
南大《探索数据的奥秘》课件示例代码笔记02
87 0
南大《探索数据的奥秘》课件示例代码笔记08
南大《探索数据的奥秘》课件示例代码笔记08
70 0
南大《探索数据的奥秘》课件示例代码笔记17
南大《探索数据的奥秘》课件示例代码笔记17
63 0