文章目录
垃圾回收器有多个,先说新生代的三个垃圾回收器,serial,parnew,parallel scavenge,然后再说老年代的serial old,parallel old,cms,最后在说一下新生代和老年代都使用的垃圾回收器G1吧。
Serial
Serial是新生代下使用复制算法,单线程运行的垃圾回收器,简单高效,没有线程交互开销,专注于GC,这个垃圾回收器工作的时候会将所有应用线程全部冻结,而且是单核cpu,所以基本不会考虑使用它。
ParNew
ParNew是新生代下使用复制算法,多线程运行的垃圾回收器,可以并行并发GC,和serial对比,除了多核cpu并行gc其他基本相同。
Parallel scavenge
Parallel scavenge也是新生代下使用复制算法,可以进行吞吐量控制的多线程回收器,主要关注吞吐量,通过吞吐量的设置控制停顿时间,适应不同的场景。可以发现新生代的垃圾回收器都使用,复制算法进行gc。
复制算法
新生代中每次垃圾回收都要回收大部分对象,所以为了避免内存碎片化的缺陷,这个算法按内存容量将内存划分为大小相等的两块,每次只使用其中一块,当这一块存活区内存满后将gc之后还存活的对象复制到另一块存活区上去,把已使用的内存清掉。
分代收集算法
按照分代收集算法的思想,把应用程序可用的堆空间分为年轻代,老年代,永久代,然后年轻代有被分为Eden区和二个Survivor存活区,这个比例又可以分为8比1比1。当第一次eden区发生minor gc,会把存活的对象复制到其中的一个Survivor区,然后eden区继续放对象,直到触发gc,会把eden区和之前存放对象的Survivor区一起gc,二个区存活下来的对象,复制到另一个空的Survivor里面,这二个区就清空,然后将二个存活区角色互换。
当对象在Survivor区躲过一次GC 后,年龄就会+1,存活的对象在二个Survivor区不停的移动,默认情况下年龄到达15的对象会被移到老生代中,这是对象进入到老年代的第一种情况。
第二种情况就是,创建了一个很大的对象,这个对象的大小超过了jvm里面的一个参数max tenuring thread hold值,这个时候不会创建在eden区,新对象直接进入老年代。
第三种情况,如果在Survivor区里面,同一年龄的所有对象大小的总和大于Survivor区大小的一半,年龄大于等于这个年龄对象的,就可以直接进入老年代,举个例子,存活区只能容纳5个对象,有五个对象,1岁,2岁,2岁,2岁,3岁,3个2岁的对象占了存活区空间的5分之三,大于这个空间的一半了,这个时候大于等于2岁的对象,需要移动到老年代里面,也就是3个2岁的,一个3岁的对象移动到老年代里面。
空间分配担保
第四种情况就是eden区存活的对象,超过了存活区的大小,会直接进入老年代里面。另外在发生minor gc之前,必须检查老年代最大可用连续空间,是不是大于新生代所有对象的总空间,如果大于,这一次的minor gc可以确保是安全的,如果不成立,jvm会检查自己的handlepromotionfailure这个值是true还是false。true表示运行担保失败,false则表示不允许担保失败。如果允许,就会检查老年代最大可用连续空间是不是大于历次晋升到老年代平均对象大小,如果大于就尝试一次有风险的minorgc,如果小于或者不允许担保失败,那就直接进行fgc了。
举个例子,在minorgc发生之前,年轻代里面有1g的对象,这个时候,老年代瑟瑟发抖,jvm为了安慰这个老年代,它在minor gc之前,检查一下老年代最大可用连续空间,假设老年代最大可用连续空间是2g,jvm就会拍拍老年代的肩膀说,放心,哪怕年轻代里面这1g的对象全部给你,你也吃的下,你的空间非常充足,这个时候,老年代就放心了。
但是大部分情况下,在minor gc发生之前,jvm检查完老年代最大可用连续空间以后,发现只有500M,这个时候虚拟机不会直接告诉老年代你的空间不够,这个时候会进行第二次检查,检查自己的一个参数handlepromotionfailure的值是不是允许担保失败,如果允许担保失败,就进行第三次检查。
检查老年代最大可用连续空间是不是大于历次晋升到老年代平均对象大小,假设历次晋升到老年代平均对象大小是300M,现在老年代最大可用连续空间只有500M,很明显是大于的,那么它会进行一次有风险的minorgc,如果gc之后还是大于500M,那么就会引发fgc了,但是根据以往的一些经验,问题不大,这个就是允许担保失败。
假设历次晋升到老年代平均对象大小是700M,现在老年代最大可用连续空间只有500M,很明显是小于的,minorgc风险太大,这个时候就直接进行fgc了,这就是我们所说的空间分配担保。
Serial Old
Serial Old就是老年代下使用标记整理算法,单线程运行的垃圾回收器。
Parallel old
Parallel old也是老年代下使用标记整理算法,可以进行吞吐量控制的多线程回收器,在JDK1.6才开始提供,在JDK1.6之前,新生代使用ParallelScavenge 收集器只能搭配年老代的Serial Old收集器,只能保证新生代的吞吐量优先,无法保证整体的吞吐量,Parallel Old 正是为了在年老代同样提供吞吐量优先的垃圾收集器而出现的。
上面的Serial Old,Parallel Old这二个垃圾回收器使用的是标记整理算法.
标记整理算法
标记整理算法是标记后将存活对象移向内存的一端,然后清除端边界外的对象。标记整理算法可以弥补标记清除算法当中,内存碎片的缺点,也消除了复制算法当中,内存使用率只有90%的现象,不过也有缺点,就是效率也不高,它不仅要标记所有存活对象,还要整理所有存活对象的引用地址。从效率上来说,标记整理算法要低于复制算法。
CMS
CMS是老年代使用标记清除算法,并发收集低停顿的多线程垃圾回收器。这个垃圾回收器可以重点讲一下,CMS 工作机制相比其他的垃圾收集器来说更复杂,整个过程分为以下4个阶段:
初始标记,只是标记一下GC Roots,能直接关联的对象,速度很快,需要暂停所有的工作线程。
并发标记,进行GC Roots跟踪的过程,和用户线程一起工作,不需要暂停工作线程。
重新标记,为了修正在并发标记期间,因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,需要暂停所有的工作线程。
并发清除,清除 GC Roots 不可达对象,和用户线程一起工作,不需要暂停工作线程。由于耗时最长的并发标记和并发清除过程中,垃圾收集线程可以和用户现在一起并发工作,所以总体上来看CMS 收集器的内存回收和用户线程是一起并发地执行。
但是很明显无法处理浮动垃圾,就是已经标记过的对象,开始进行并发清除的时候,这个时候又有垃圾对象产生,这个时候,没办法清除这部分的浮动垃圾了,还有一个问题就是容易产生大量内存碎片,这和它的算法特性相关。
标记清除算法
标记清除算法分为两个阶段,标注和清除。标记阶段标记出所有需要回收的对象,清除阶段回收被标记的对象所占用的空间。
CMS使用标记清除算法看中的就是它的效率高,只不过内存碎片化严重,后续可能发生大对象不能找到可利用空间的问题。
G1
G1 收集器避免全区域垃圾收集,它把堆内存划分为大小固定的几个独立区域,每个区域又可以根据分代理论分为eden区,Survivor区,只要这个区域里面出现了一个对象,超过了这个区域空间的一半就可以把它当作大对象,g1专门开辟了一块空间用来存储大对象,这个区域的大小,可以通过jvm的参数去设置,取值范围是1~32mb之间,那么如果有一个对象超过了32mb,那么jvm会分配二个连续的区域,用来存储这个大对象。
跟踪这些区域的垃圾收集进度,同时在后台维护一个优先级列表,每次根据所允许的收集时间,优先回收垃圾最多的区域。区域划分和优先级区域回收机制,保证了G1 收集器可以在有限时间获得最高的垃圾收集效率。而且基于标记整理算法,不产生内存碎片。可以非常精确控制停顿时间,在不牺牲吞吐量前提下,实现低停顿垃圾回收。在jdk1.9的时候,被设置成默认的垃圾回收器了。