面试被问到MySQL索引,别再说不了解了,看完这篇你可以说个不停

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 面试被问到MySQL索引,别再说不了解了,看完这篇你可以说个不停

@TOC

0.写在前面

文章中包含了:
1.什么是索引
2.索引的数据结构,以及各自的使用场景
3.为什么要设置主键自增?
4.基于主键索引和普通索引的查询有什么区别?
5.什么是回表
6.InnoDB 的索引模型

1.为什么要使用索引

索引的使用就是为了提高查询数据的效率,就像书的目录一样

2.常见的索引模型

哈希表
哈希表是一种以键值存储的数据结构,只需要通过key就可以找到对应的值
思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
当多个key经过哈希函数换算,会出现同一个值,即碰撞,一般通过拉链表解决。

使用哈希表的缺陷是,经过哈希算法算出的位置是随机的,做区间查找就得将表全部扫描
所以哈希表这种结构就适合做等值查询的场景,比如Memcached及其它一些nosql引擎

有序数组

有序数组在等值查询和范围查询中的性能就非常优秀了
但是这也是仅仅对于查询来看,如果要更新的时候,就得挪动后面的记录,成本太高了

所以有序数组只适合用于静态存储索引,也就是那些不在会被修改的历史数据

二叉搜索树

二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。这样查找时间复杂度是O(log(n))级别
树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。

二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小。

InnoDB 的索引模型

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。每一个索引在InnoDB里面对应一棵B+树。

  • 假设有一个主键为id的表,字段grade上有索引
mysql> create table Student(
id int primary key, 
grade int not null, 
name varchar(16),
index (k))engine=InnoDB;

表中t1~t5的(ID,grade)值分别为(1,70)、(2,80)、(3,90)、(4,100)和(5,110),
此时两棵索引树的示例示意图如下。

从图中不难看出,根据叶子节点的内容,索引类型分为主键索引和非主键索引
主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。
非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

那么基于主键索引和普通索引的查询有什么区别?

如果语句是select from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
如果语句是select
from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

3.索引维护

B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。根据b+树的性质,当插入的值比之前的值都大时,只需在末尾加一个就行了,如果新插入的值,在之前插入值的中间,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。而更糟的情况是,如果最后一个值所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。
除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。
当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。、

如果用主键自增
插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。
也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。

4.回表?举例子。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
14天前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
|
15天前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
1月前
|
SQL 缓存 关系型数据库
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴因未能系统梳理MySQL缓存机制而在美团面试中失利。为此,尼恩对MySQL的缓存机制进行了系统化梳理,包括一级缓存(InnoDB缓存)和二级缓存(查询缓存)。同时,他还将这些知识点整理进《尼恩Java面试宝典PDF》V175版本,帮助大家提升技术水平,顺利通过面试。更多技术资料请关注公号【技术自由圈】。
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
|
17天前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
24天前
|
SQL 算法 关系型数据库
面试:什么是死锁,如何避免或解决死锁;MySQL中的死锁现象,MySQL死锁如何解决
面试:什么是死锁,死锁产生的四个必要条件,如何避免或解决死锁;数据库锁,锁分类,控制事务;MySQL中的死锁现象,MySQL死锁如何解决
|
28天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
155 1
|
1月前
|
SQL 关系型数据库 MySQL
美团面试:Mysql如何选择最优 执行计划,为什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴面试美团时遇到了关于MySQL执行计划的面试题:“MySQL如何选择最优执行计划,为什么?”由于缺乏系统化的准备,小伙伴未能给出满意的答案,面试失败。为此,尼恩为大家系统化地梳理了MySQL执行计划的相关知识,帮助大家提升技术水平,展示“技术肌肉”,让面试官“爱到不能自已”。相关内容已收录进《尼恩Java面试宝典PDF》V175版本,供大家参考学习。
|
29天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
65 0
|
19天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
34 1
|
21天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
35 4