理论到应用,朱军教授带团队解读扩散概率模型

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 理论到应用,朱军教授带团队解读扩散概率模型


2022 年以来,扩散模型成为计算机视觉领域最热门的话题之一。扩散模型在深度生成模型中自成一派,展示出强大的生成能力,无论是生成高水平的细节还是其生成的多样性,都让人印象深刻。


迄今为止,扩散模型已被应用于各种生成式建模任务,如图像生成、图像超分、图像修复、图像编辑、图像转换等等。可以看到,这一方向的论文数量正在以非常快的速度增长,而扩散概率模型正是其中一个重要的类别。

在最新一期的线上分享中,机器之心邀请到了清华大学计算机系教授朱军为我们介绍关于扩散概率模型的最新进展。


分享主题:扩散概率模型的理论及应用

分享摘要:本次分享中将介绍朱军教授团队关于扩散概率模型的最新进展。首先,将简要介绍深度生成模型的基本原理和典型进展。然后,介绍扩散概率模型的两个代表性进展:第一个工作是《Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models》。该工作给出了扩散概率模型逆向过程最优均值和最优方差的解析解。该解析解表明了一个令人惊讶的结论是,最优均值和最优方差均由得分函数决定。因此,一个预训练好的得分模型便可同时估计最优均值和最优方差。此外,根据该解析解的形式,我们能界定出最优方差的上下界,并且在数值上表明该上下界是紧的。在实际中,通过估计最优的方差,我们能提升模型在密度估计上的性能,以及显著提升模型的采样速度。第二个工作是《DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps》。该工作从数学上推导出了扩散常微分方程模型(diffusion ODEs)的极其简洁的解的形式,并基于该形式设计了误差尽可能最小的高阶常微分方程求解器,称为 DPM-Solver。DPM-Solver 无需任何额外训练,并同时适用于连续时间情形与离散时间情形的扩散模型。实验结果表明,DPM-Solver 可在 20 步左右达到几乎收敛的采样,甚至在 10 步左右也可以生成较高质量的图片,在不同分辨率的数据集中都取得了显著优于所有已有算法的加速效果。嘉宾简介:朱军,清华大学计算机系 Bosch AI 教授、人智所所长,瑞莱智慧联合创始人兼首席科学家,曾任卡内基梅隆大学兼职教授。长期从事机器学习研究,特别是概率机器学习、贝叶斯方法的基础理论、高效算法和编程库,并利用贝叶斯方法研究深度神经网络的对抗鲁棒性以及复杂环境下的决策学习等问题。担任 IEEE TPAMI 的副主编,ICML、NeurIPS、ICLR 等国际会议资深领域主席 / 领域主席 20 余次。曾获科学探索奖、中国计算机学会自然科学一等奖、吴文俊人工智能自然科学一等奖、ICLR 杰出论文奖等,入选万人计划领军人才、MIT TR35 中国先锋者、IEEE“AI’s 10 to Watch”、北京市优秀青年人才等,带领团队研制 “珠算” 深度概率编程库、“天授”强化学习库和 Ares 对抗攻防平台。获首届 “对抗样本攻防竞赛” 国际竞赛所有三个任务的冠军、ViZDoom 对抗决策国际竞赛 2018 年冠军等。鲍凡同学在扩散概率模型上做出了突出成果,他作为一作的论文《Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models》获得世界级学术奖项 ICLR 2022 杰出论文奖,是该会议首篇且唯一一篇由中国大陆单位独立完成的获奖论文。该项目产生了广泛的影响力,作为核心技术被应用到 OpenAI 发布的超大规模跨模态生成模型 DALL·E 2 上。他积极探索扩散概率模型的应用场景,在扩散模型的加速、可控生成、基本架构方面产出近十篇论文,在理论研究及实践应用上均有出色的成果贡献。路橙同学致力于研究扩散概率模型的底层原理与算法,他作为一作的论文《DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps》获得 Neurips 2022 Oral(接受率约 1.7%),是目前扩散模型无需额外训练的最快的采样算法,可在 20 步左右达到几乎收敛的采样,甚至在 10 步左右也可以生成较高质量的图片。该项目在各大开源社区产生了广泛的影响,目前项目 Github 获得 300+ star,并已被扩散模型主流库 Diffusers 支持。该算法在 Stable-Diffusion 上仅仅使用 20-25 步就可生成极高质量的图片,是目前 Stable-Diffusion 在 huggingface spaces 的官方示例的默认采样算法,在 DreamStudio、StableBoost、Stable-Diffusion-WebUI 等各大 text-to-image 项目中也为公认的加速效果最好的算法。此外,他积极探索扩散概率模型的底层原理,在扩散常微分方程模型的最大似然训练算法、高阶去噪得分匹配算法等方面做出了重要的理论贡献。

相关文章
|
1月前
|
算法 计算机视觉
麻省理工创新模型:用2D视频扩散,生成 3D 视频
【10月更文挑战第13天】麻省理工学院研究人员提出了一种名为Vid3D的创新模型,利用2D视频扩散生成3D视频。与现有方法不同,Vid3D不显式建模3D时间动态,而是独立生成每个时间步的3D表示。实验结果表明,Vid3D在生成高质量动态3D场景方面表现优异,且方法更为简单高效。论文地址:https://arxiv.org/abs/2406.11196
105 70
|
6月前
|
人工智能 UED
清华大学研究提出用大模型做心理测量
【2月更文挑战第24天】清华大学研究提出用大模型做心理测量
268 2
清华大学研究提出用大模型做心理测量
|
机器学习/深度学习 人工智能 编解码
理论到应用,朱军教授带团队解读扩散概率模型
理论到应用,朱军教授带团队解读扩散概率模型
253 0
|
机器学习/深度学习 自然语言处理 算法
「扩散模型」首篇综述!谷歌&北大最新研究
「扩散模型」首篇综述!谷歌&北大最新研究
564 0
|
数据安全/隐私保护
把「醉汉游走」引入「三体问题」,以色列学者新思路登上物理学顶刊
把「醉汉游走」引入「三体问题」,以色列学者新思路登上物理学顶刊
198 0
把「醉汉游走」引入「三体问题」,以色列学者新思路登上物理学顶刊
|
机器学习/深度学习 传感器 人工智能
Reddit热议:15岁高中生用神经网络建立生命进化“新宇宙”
一位年仅15岁波兰高中生利用神经网络和遗传算法模拟出了人造生命的繁衍和进食活动,将视频发在了Youtube上。reddit网友纷纷表示鼓励,并表示,过个几百万年,说不定这个网络能够进化出战争和国家!
192 0
Reddit热议:15岁高中生用神经网络建立生命进化“新宇宙”
|
算法 图形学 信息无障碍
真·降维打击:这篇SIGGRAPH 2020论文帮你「想象」三维生物眼里的四维空间
四维空间是什么样子?里面的物体如何运动?一篇 SIGGRAPH 2020 论文帮我们 “想象” 出了这个过程,看完论文,你还可以上手试试游戏。
251 0
真·降维打击:这篇SIGGRAPH 2020论文帮你「想象」三维生物眼里的四维空间
|
机器学习/深度学习 JavaScript 算法
视频 | NeurIPS 2019分享:清华大学孙富春组提出全新模仿学习理论
在 NeurIPS 2019正式召开以前,机器之心精心策划了 NeurIPS 2019 专题,包括线上分享、论文解读、现场报道等内容。11月14日,第一期分享已经圆满结束。本文介绍的是「全新智能体观测模仿学习」,这是清华计算机系类脑计算与认知团队最新提出的一种学习理论,也是学界首次将生成式对抗方法推广到观测模仿学习中。
259 0
视频 | NeurIPS 2019分享:清华大学孙富春组提出全新模仿学习理论
|
机器学习/深度学习 算法 数据可视化
NeurIPS 2019分享:清华大学孙富春组提出全新模仿学习理论
在 NeurIPS 2019正式召开以前,机器之心精心策划了 NeurIPS 2019 专题,包括线上分享、论文解读、现场报道等内容。11月14日,第一期分享已经圆满结束。本文介绍的是「全新智能体观测模仿学习」,这是清华计算机系类脑计算与认知团队最新提出的一种学习理论,也是学界首次将生成式对抗方法推广到观测模仿学习中。
576 0
 NeurIPS 2019分享:清华大学孙富春组提出全新模仿学习理论
|
机器学习/深度学习 人工智能 算法
南大周志华、俞扬、钱超最新力作:《演化学习:理论与算法进展》正式上线
梯度下降或最速下降法,是机器学习最为重要的模块之一。尤其是在深度学习时代,梯度下降已成为不可或缺的组成部分。但同时,梯度下降也限制了机器学习推广到更广泛的一些任务中,例如不可微的目标函数。这一缺陷,却正好能被本书的主题「演化学习」解决。
481 0
南大周志华、俞扬、钱超最新力作:《演化学习:理论与算法进展》正式上线

热门文章

最新文章

下一篇
无影云桌面