【即插即用】分类、检测、分割等均有效的新型卷积模块(Tied卷积,即将开源)(一)

简介: 【即插即用】分类、检测、分割等均有效的新型卷积模块(Tied卷积,即将开源)(一)

1、简介


卷积是卷积神经网络(CNN)的主要构建块。通过实验观察到,通道数量随着深度的增加而增加,优化后的CNN通常具有高度相关的Filters,从而降低了特征表示的表达能力。

通过图(a)可以看出,随着网络Layer的加深,卷积核之间的相关性越来越强;

通过上图也可以得到,随着Layer的增加,kernel的多样性也在下降,kernel之间的相关性也在增加;

为了解决这种冗余的状况,作者提出了Tied Block Convolution(TBC),它在相同的通道块上共享相同的Thinner kernels,并通过单个kernel产生多个响应。

TBC不仅仅在标准卷积使用,还可以扩展到组卷积和完全连接的层,并且可以应用于各种backbone和注意力模块。同时TBC卷积在标准卷积和群组卷积方面具有明显的效果和性能,所提出的TiedSE注意模块甚至可以使用比SE模块少64倍的参数情况下得到差不多的性能。

特别是,标准的CNN经常在存在遮挡的情况下无法准确地提取信息,并导致多个冗余的部分object proposal。而TBC天生具有去除冗余的性质可以减少相关性并可以有效处理高度重叠的实例。当遮挡率为80%时,TBC可将MS-COCO上物体检测的平均精度提高6%。


2、相关工作


2.1、Backbone Networks

这里应该是大家都熟知的经典模型了,在这里再罗列一下,具体原理和设计不在解说,大家可以自行看论文原文:

  • AlexNet
  • VGGNet
  • GoogleNet
  • ResNet
  • ResNeXt
  • HRNet

等等。

2.2、Attention Modules

在罗列的Attention相比也是大家所熟知的,也可能就是正在使用的香饽饽,具体原理和设计不在解说,大家可以自行看论文原文:

  • SENet
  • SKNet
  • GCBNet
  • CAM
  • MS-CAM

等等


3、Tied Block Convolution Network Design


3.1、TCB卷积的诞生

Standard Convolution

这里假设输入特征为,输出特征为,则标准卷积SC(Standard Convolution):

其中SC kernel为,参数量为

Group Convolution

这里假设把把输入特征X分为G个相同size的Group,表示为,相应地每个Group的size为,那么GC可以表示为:

其中表示Concatenate操作,参数量为;下图为分为2个Group的操作,用了两个不同的Kernel:

Tied Block ConvolutionTBC卷积通过在不同特征组间重用Kernel来减少滤波器的有效数量:

其中表示Concatenate操作,参数量为;B表示把Channel分为多少个Group,即B个Equal Block;

3.2、TCB卷积相对于GC卷积的优势

  • 相对于GC卷积,参数量降低了B倍;
  • BC在GPU利用率上只有1个Fragmentations,而GC有G个Fragmentations,大大降低了并行度;
  • 每一组TBC过滤器都应用于所有输入通道,可以更好地建模跨通道依赖关系;

3.3、TCB卷积的拓展使用

1、TGC(Tied Block Group Convolution)卷积

TCB卷积的思想也可以直接应用到Group卷积中,表示为:

image.png

2、TFC(Tied Block Fully Connected Layer)

将同样的TCB卷积的思想应用到FC中。Tied Block Fully Connected Layer(TFC)共享输入通道等块之间的FC连接。

3.4、TBC构建的Bottleneck

3.4.1、TiedResNet

下图为基于TBC卷积和ResNet构建的TiedResNet Bottleneck:

image.png

3.4.2、TiedResNeXt

下图为基于TBC卷积和ResNet构建的TiedResNeXt Bottleneck:

image.png

3.4.3、TiedResNeSt

下图为基于TBC卷积和ResNet构建的TiedResNeSt Bottleneck:

image.png

3.4.4、TiedSE

下图为基于TBC卷积和ResNet构建的TiedSE Bottleneck:

image.png

3.4.5、TiedGCB下图为基于TBC卷积和ResNet构建的TiedGCB Bottleneck:

image.png

相关文章
|
2天前
|
机器学习/深度学习 编解码 自然语言处理
YOLOv8改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
YOLOv8改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
122 0
YOLOv8改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
|
2天前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
168 0
|
2天前
|
机器学习/深度学习 人工智能 算法
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
人工智能中数据组合采样、特征层、算法层的讲解(图文详解)
73 0
|
2天前
|
机器学习/深度学习 数据挖掘 测试技术
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
128 1
|
2天前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
209 2
|
2天前
|
机器学习/深度学习 编解码 自然语言处理
YOLOv5改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
YOLOv5改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
38 2
|
2天前
|
机器学习/深度学习 编解码 固态存储
YOLOv8改进之更换BiFPN并融合P2小目标检测层
BiFPN(Bi-directional Feature Pyramid Network)是一种用于目标检测和语义分割任务的神经网络架构,旨在改善特征金字塔网络(Feature Pyramid Network, FPN)的性能。FPN是一种用于处理多尺度信息的网络结构,通常与骨干网络(如ResNet或EfficientNet)结合使用,以生成不同分辨率的特征金字塔,从而提高对象检测和分割的性能。BiFPN在此基础上进行了改进,以更好地捕获多尺度信息和提高模型性能。
870 0
|
5月前
|
机器学习/深度学习 运维 自然语言处理
揭示堆叠自动编码器的强大功能 - 最新深度学习技术
揭示堆叠自动编码器的强大功能 - 最新深度学习技术
46 0
|
机器学习/深度学习 传感器 编解码
万字长文 | 多目标跟踪最新综述(基于Transformer/图模型/检测和关联/孪生网络)(上)
随着自动驾驶技术的发展,多目标跟踪已成为计算机视觉领域研究的热点问题之一。MOT 是一项关键的视觉任务,可以解决不同的问题,例如拥挤场景中的遮挡、相似外观、小目标检测困难、ID切换等。为了应对这些挑战,研究人员尝试利用transformer的注意力机制、利用图卷积神经网络获得轨迹的相关性、不同帧中目标与siamese网络的外观相似性,还尝试了基于简单 IOU 匹配的 CNN 网络、运动预测的 LSTM。为了把这些分散的技术综合起来,作者研究了过去三年中的一百多篇论文,试图提取出近年来研究者们更加关注的解决 MOT 问题的技术。
万字长文 | 多目标跟踪最新综述(基于Transformer/图模型/检测和关联/孪生网络)(上)
|
9月前
|
机器学习/深度学习 编解码 数据可视化
ConvNeXt V2:与屏蔽自动编码器共同设计和缩放ConvNets,论文+代码+实战
ConvNeXt V2:与屏蔽自动编码器共同设计和缩放ConvNets,论文+代码+实战