迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习(1)

简介: 迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习

迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习

原创ScienceAIScienceAI 2022-12-06 11:39 发表于河南

收录于合集

#AI191

#深度学习131

#迁移学习4

#方程3

编辑 | 绿萝传统的机器学习算法旨在孤立地学习,即解决单个任务在许多实际应用中,收集所需的训练数据和重建模型要么成本高得令人望而却步,要么根本不可能。迁移学习(TL)能够将在学习执行一个任务(源)时获得的知识迁移到一个相关但不同的任务(目标),从而解决数据采集和标记的费用、潜在的计算能力限制和数据集分布不匹配的问题。来自美国布朗大学和约翰斯·霍普金斯大学(JHU)的研究人员提出了一种新的迁移学习框架,用于基于深度算子网络 (DeepONet) 的条件转移下的任务特定学习(偏微分方程中的函数回归)。由于几何域和模型动力学的变化,研究人员展示了该方法在不同条件下涉及非线性偏微分方程的各种迁移学习场景的优势。尽管源域和目标域之间存在相当大的差异,但提出的迁移学习框架能够快速高效地学习异构任务。该研究以「Deep transfer operator learning for partial differential equations under conditional shift」为题,发布在《Nature Machine Intelligence》上。论文链接:https://www.nature.com/articles/s42256-022-00569-2深度学习已经成功地应用于模拟偏微分方程(PDE)描述的计算成本很高的复杂物理过程,并实现了卓越的性能,从而加速了不确定性量化、风险建模和设计优化等众多任务。但此类模型的预测性能通常受到用于训练的标记数据的可用性的限制。然而,在许多情况下,收集大量且足够的标记数据集在计算上可能很棘手。此外,孤立学习(即为独特但相关的任务训练单个预测模型)可能非常昂贵。为了解决这个瓶颈,可以在称为迁移学习的框架中利用相关领域之间的知识。在这种情况下,来自在具有足够标记数据的特定域(源)上训练的模型的信息可以转移到只有少量训练数据可用的不同但密切相关的域(目标)。由于缺乏针对特定任务的算子(operator)学习和不确定性量化的 TL 方法,在这项工作中,研究人员提出了一个使用神经算子在条件转换下高效 TL 的新框架。

图 1:利用 DeepONet 提出的近似 PDE 解的迁移学习框架。(来源:论文)

研究人员将目标神经算子称为迁移学习深度算子网络 (TL-DeepONet)。这项工作背后的主要思想是在标准回归损失下从源域训练具有足够标记数据(即模型评估)的源模型,并将学习的变量迁移到第二个目标模型,该目标模型在混合损失函数下用来自目标域的非常有限的标记数据训练。混合损失包括回归损失和条件嵌入算子差异 (CEOD) 损失,用于衡量再现核希尔伯特空间 (RKHS) 中条件分布之间的差异。所提出框架的关键要素是利用源模型提取的域不变特征,从而有效地初始化目标模型变量。在这项工作中,研究人员采用了更通用的深度神经算子 (DeepONet),它使我们能够充分学习算子,从而对任意新输入和复杂域执行实时预测。重要的是,所提出的迁移学习框架能够在标记数据非常有限的领域中识别 PDE 算子。这项工作的主要贡献可归纳如下:

  • 提出了一种新的框架,用于在深度神经算子的条件转移下迁移学习问题。
  • 所提出的框架可用于快速高效的特定于任务的 PDE 学习和不确定性量化。
  • 利用 RKHS 和条件嵌入算子理论的原理来构建新的混合损失函数并对目标模型进行微调。
  • 所提出框架的优点和局限性通过各种迁移学习问题得到证明,包括由于域几何、模型动力学、材料特性、非线性等变化引起的分布变化。

研究人员提出了参数 PDE 的迁移学习问题的综合集合,以评估所提出方法的有效性。图 2 给出了所考虑的不同基准的直观描述。首先介绍基准问题以及所考虑的迁移学习场景,然后提供实验结果。

图 2:本工作中考虑的算子学习基准和 TL 场景的示意图。(来源:论文)

场景一——达西流:达西定律描述了流体在给定渗透率下流过多孔介质的压力,可以用以下方程组进行数学表示:∇⋅(K(x)∇h(x))=g(x),x=(x,y)                                                                     (1)受以下边界条件约束:h(x)=0,∀x∈∂Ω,其中 K(x) 是异质多孔介质随空间变化的导水率,h(x) 是相应的水头。本研究的目标是学习等式(1)中系统的算子,它将输入随机电导率场映射到输出水头(hydraulic head);即 为了生成多个电导率场来训练 DeepONet,将 K(x) 描述为一个随机过程,其实现是通过截断的 Karhunen–Loéve 展开生成的。源模拟框是一个方形域 Ω = [0,1] ×[0,1],离散化 d = 1541 个网格点。考虑以下四种迁移学习场景:TL1:将学习从正方形域迁移到等边三角形。TL2:将学习从正方形域转移到直角三角形。TL3:将学习从正方形域迁移到具有垂直缺口的等边三角形。TL4:将学习从具有一个垂直缺口的方形域迁移到具有两个水平缺口的方形域。研究发现,任务 TL1 和 TL2 展示了该方法能够以高精度将知识从方形域转移到三角形域,即使在使用小型数据集进行训练时也是如此(见表 1)。为了测试该方法在具有挑战性的情况下的性能,考虑具有不连续性和缺口的域(任务 TL3 和 TL4)。观察到 TL-DeepONet 精度损失小于 5%,这表明即使考虑了非常不同的外部边界域,也可以用很少的标记数据预测液压头。

表 1:所有达西流问题的相对 L2 误差 (TL1–TL4)。(来源:论文)

相关文章
|
10天前
|
数据可视化
R语言非参数模型厘定保险费率:局部回归、广义相加模型GAM、样条回归
R语言非参数模型厘定保险费率:局部回归、广义相加模型GAM、样条回归
12 0
|
10天前
|
算法 Linux Python
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
R语言BUGS序列蒙特卡罗SMC、马尔可夫转换随机波动率SV模型、粒子滤波、Metropolis Hasting采样时间序列分析
40 8
|
3月前
用图直观上理解梯度算子(一阶)与拉普拉斯算子(二阶)的区别,线检测与边缘检测的区别
用图直观上理解梯度算子(一阶)与拉普拉斯算子(二阶)的区别,线检测与边缘检测的区别
57 1
|
4月前
|
算法 定位技术
插值、平稳假设、本征假设、变异函数、基台、块金、克里格、线性无偏最优…地学计算概念及公式推导
插值、平稳假设、本征假设、变异函数、基台、块金、克里格、线性无偏最优…地学计算概念及公式推导
|
9月前
|
算法 调度 决策智能
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
179 0
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
|
8月前
|
数据采集 监控 算法
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
【状态估计】基于二进制粒子群优化 (BPSO) 求解最佳 PMU优化配置研究【IEEE30、39、57、118节点】(Matlab代码实现)
|
9月前
|
存储 算法
PDE优化|逆问题中偏微分方程约束优化的惩罚方法(Matlab代码实现)
PDE优化|逆问题中偏微分方程约束优化的惩罚方法(Matlab代码实现)
119 0
|
9月前
|
存储 人工智能 算法
鲁棒优化入门(4)-两阶段鲁棒优化及行列生成算法(C&CG)超详细讲解
        鲁棒优化是应对数据不确定性的一种优化方法,但单阶段鲁棒优化过于保守。为了解决这一问题,引入了两阶段鲁棒优化(Two-stage Robust Optimization)以及更一般的多阶段鲁棒优化,其核心思想是将决策问题分为两个阶段。第一阶段是进行初步决策,第二阶段是根据第一阶段的决策结果制定更好的决策策略,应对数据不确定性的影响。这种方法可以降低保守性,提高鲁棒性。
|
11月前
|
机器学习/深度学习
迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习(2)
迁移学习「求解」偏微分方程,条件偏移下PDE的深度迁移算子学习
117 0
|
11月前
|
机器学习/深度学习 算法 数据可视化
ECCV 2022 | 在视觉Transformer上进行递归,不增参数,计算量还少
ECCV 2022 | 在视觉Transformer上进行递归,不增参数,计算量还少