【机器学习】引用次数在1.5w次以上神仙论文!(下)

简介: 【机器学习】引用次数在1.5w次以上神仙论文!

正文


3. 通信和图像处理


梳理一下通信和图像处理方面,读过的一些经典的,超过15000引用的论文。


1. A Mathematical theory of communication

21.png引用次数:78680评价:开创了信息论,直接奠定了通信的发展,大名鼎鼎的香农三定理和熵的概念就是在这篇文章中提出的。没有它,就没有WiFi和5G,也没有我们刷着知乎听着歌


2. A combined coerner and edge detector

22.jpg

引用次数:18167评价:提出了角点特征,能够检测图片中的角点、边缘和图片。是图像特征提取的代表作,是图像分割、匹配等的基础。


3. Distinctive image features from scale-invariant keypoints


23.jpg

引用次数:59561评价:大名鼎鼎的SIFT特征,具有尺度、方向、仿射不变性,和上一篇论文的Haris特征一起,成为图像特征提取的两个最重要技术。


4. Object recognition from local scale-invariant features


引用次数:20100评价:David Lowe的另一篇文章,说的是利用尺度不变特征来进行目标识别


5. Compressed Sensing


引用次数:27557评价:压缩感知的代表作之一,将采样和压缩过程结合起来同时进行,直接对信号的稀疏性进行感知。


6. Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information


引用次数:16700评价:压缩感知的另一篇代表作


7.  A new approach to linear filtering and prediction problems


引用次数:35070评价:提出了著名的卡尔曼滤波。如果你没听说过卡尔曼滤波不要仅,但你一定点过外卖,打过滴滴,甚至美国阿波罗号上天也用过它,根据测量值和状态方程修正真实值,就是它干的事情,


8. A computational approach to edge detection


引用次数:35942评价:边缘检测的另一篇代表作


9. Gradient-based learning applied to document recognition


24.jpg引用次数:32192评价:LeCun的经典论文,做过机器学习的都知道,没做过机器学习的也一般听说过MNIST数据集

来源:远处群山(知乎)

https://www.zhihu.com/question/433702668/answer/1622573162


4. 信号处理和图像处理


引用一万五千次以上的论文相当罕见,基本上都属于开山之作,开创了某个中等或者大领域的作品。

现在深度学习的论文里15000次引用的挺多的,看到也有其他答主总结了,我就重点说下信号处理和图像处理的经典论文,


压缩感知的两篇开山之作:


  • Donoho D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306. 27000次引用
  • Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on information theory, 2006, 52(2): 489-509. 16000次引用

统计学习里大名鼎鼎的LASSO:


  • Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. 引用35000次


统计学习的圣典:


  • Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.

图像分割的开山之作normalized cut:


  • Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905. 引用16000次


同样来自Malik老师的图像去噪神作——扩散滤波,威名赫赫的Perona-Malik模型,多少PDE-based image processing methods就是源自这里:


  • Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on pattern analysis and machine intelligence, 1990, 12(7): 629-639. 引用15000次


图像去噪的又一神作,超级经典的全变差模型:


  • Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259-268. 引用15000次


无比经典的SIFT图像特征检测以及方向梯度直方图(HOG)模型,做图像处理的应该没有不知道这两个的:


  • Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. 58000次引用
  • Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, 2005, 1: 886-893. 32000次引用

做图像恢复的人肯定都知道SSIM这个指标,出自这篇文章:


  • Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612. 引用27000


大家还知道哪些引用率超高的重量级文章呢?欢迎在留言区讨论!

相关文章
|
7月前
|
机器学习/深度学习 人工智能 算法
【AAAI 2024】再创佳绩!阿里云人工智能平台PAI多篇论文入选
阿里云人工智能平台PAI发表的多篇论文在AAAI-2024上正式亮相发表。AAAI是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。论文成果是阿里云与浙江大学、华南理工大学联合培养项目等共同研发,深耕以通用人工智能(AGI)为目标的一系列基础科学与工程问题,包括多模态理解模型、小样本类增量学习、深度表格学习和文档版面此次入选意味着阿里云人工智能平台PAI自研的深度学习算法达到了全球业界先进水平,获得了国际学者的认可,展现了阿里云人工智能技术创新在国际上的竞争力。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
机器学习-点击率预估-论文速读-20240916
机器学习-点击率预估-论文速读-20240916
41 0
|
4月前
|
机器学习/深度学习 存储 人工智能
【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台PAI在自然语言处理和多模态算法、算法框架能力方面研究获得了学术界认可。
|
5月前
|
机器学习/深度学习 人工智能 分布式计算
阿里云人工智能平台PAI论文入选OSDI '24
阿里云人工智能平台PAI的论文《Llumnix: Dynamic Scheduling for Large Language Model Serving》被OSDI '24录用。论文通过对大语言模型(LLM)推理请求的动态调度,大幅提升了推理服务质量和性价比。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
53 0