引用、 内联函数 、auto关键字(C++11)、基于范围的for循环(C++11)、指针空值---nullptr(C++12)(下)

简介: 随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:1. 类型难于拼写2. 含义不明确导致容易出错

3. auto关键字(C++11)


3.1 类型别名思考


随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

1. 类型难于拼写

2. 含义不明确导致容易出错


int main() {
  std::map<std::string, std::string> m{ 
    { "apple", "苹果" }, { "orange", "橙子" }, {"pear","梨"} }; 
  std::map<std::string, std::string>::iterator it = m.begin(); 
  while (it != m.end()) { //....
  } return 0;
}


std::map::iterator 是一个类型,但是该类型太长了,特别容易写错。 可以通过typedef给类型取别名,比如:

#include #include
typedef std::map<std::string, std::string> Map;
int main() {
  Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} }; Map::iterator it = m.begin(); while (it != m.end()) { //....
  } return 0;
}


使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

导致变量类型不明确
typedef char* pstring;
int main() {
  const pstring p1; // 编译成功还是失败?
  const pstring* p2; // 编译成功还是失败?
  return 0;
}


也可以使用宏进行替换,但是宏是直接在预编译阶段进行替换,宏也是有缺点——例如没有安全类型检查!


3.2  auto简介


    在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有 人去使用它。C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型 指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。

int TestAuto()
{
  return 10;
}
int main() {
  int a = 10;
  auto b = a;
  auto c = 'a';
  auto d = TestAuto();
  cout << typeid(b).name() << endl;
  cout << typeid(c).name() << endl; cout << typeid(d).name() << endl; //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
  return 0;
}


【注意】 使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类 型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为 变量实际的类型。


3.3   auto的使用细则


1. auto与指针和引用结合起来使用 用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&

int main() {
  int x = 10;
  auto a = &x;
  auto* b = &x;
  auto& c = x;
  cout << typeid(a).name() << endl;
  cout << typeid(b).name() << endl;
  cout << typeid(c).name() << endl;
  *a = 20;
  *b = 30;
  c = 40;
  return 0;
}


  在同一行定义多个变量 当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对 第一个类型进行推导,然后用推导出来的类型定义其他变量。

void TestAuto() 
{
auto a = 1, b = 2;
auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}


3.4 auto不能推导的场景


(1).auto不能作为函数的参数

1.// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a) {}


(2) auto不能直接用来声明数组

void TestAuto() { 
int a[] = {1,2,3}; 
auto b[] = {4,5,6}; 
}


(3). 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法


(4). auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等 进行配合使用。


4. 基于范围的for循环(C++11)


4.1  范围for的语法


在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor() {
  int array[] = { 1, 2, 3, 4, 5 };
  for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
    array[i] *= 2;
  for (int* p = array;
    p < array + sizeof(array) / sizeof(array[0]);++p)
    cout << *p << endl;
}


对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中 引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量, 第二部分则表示被迭代的范围。


void TestFor() { 
int array[] = { 1, 2, 3, 4, 5 }; 
for(auto& e : array)
     e *= 2; 
for(auto e : array) 
     cout << e << " ";
return 0; 
}


注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。


4.2   范围for的使用条件


1. for循环迭代的范围必须是确定的


      对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的 方法,begin和end就是for循环迭代的范围。


注意:以下代码就有问题,因为for的范围不确定

void TestFor(int array[])
{
  for (auto& e : array)
    cout << e << endl;
}


5.  指针空值nullptr(C++11)


5.1    C++98中的指针空值


 在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的 错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:


void TestPtr() { 
int* p1 = NULL; 
int* p2 = 0; 
// ……
}


NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

1.#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif


可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在 使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

1.void f(int) { cout<<"f(int)"<<endl; }
void f(int*) { cout<<"f(int*)"<<endl; }
int main() { f(0); f(NULL); f((int*)NULL); return 0;



程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。


   在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下 将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:

1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。

2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。

3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。


目录
相关文章
|
9月前
|
存储 安全 编译器
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值(一)
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值
139 1
|
9月前
|
存储 编译器 程序员
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值(二)
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值
112 0
|
11月前
|
存储 安全 编译器
C++入门 | auto关键字、范围for、指针空值nullptr
C++入门 | auto关键字、范围for、指针空值nullptr
221 4
|
11月前
|
编译器 C语言 C++
【C++关键字】指针空值nullptr(C++11)
【C++关键字】指针空值nullptr(C++11)
|
5月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
1月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
43 0
|
1月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
110 0
|
3月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
112 12
|
4月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
96 16
|
4月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。