在上个月举办的第 29 届 IEEE 计算机算术研讨会(IEEE Symposium on Computer Arithmetic)的一场 Keynote 演讲中,英伟达首席科学家、高级研究副总裁 Bill Dally 表示,「过去 10 年,单个芯片的训练性能提升了 1000 倍,其中很大部分要归功于数字表示。」
在朝着更高效 AI 训练前进的过程中,首先「牺牲」的是 32-bit 浮点数表示,俗称标准精度。为了全面追求速度、能效以及芯片面积和内存的更好利用,机器学习研究人员一直努力通过更少 bit 表示的数字来获得相同的训练水平。对于试图取代 32-bit 格式的竞争者来说,这个领域依然很开放,无论是在数字表示本身还是完成基础运算的方式上。