机器学习项目大汇总,值得收藏!(下)

简介: 机器学习项目大汇总,值得收藏!(下)

正文


高级机器学习项目


1.使用机器学习进行情感分析


3.png

项目构想:情感分析是分析用户情感的过程。我们可以将他们的情绪分为正面,负面或中性。了解如何进行情感分析是一个很棒的项目,并且如今已被广泛使用。这是最受欢迎的机器学习项目之一。其背后的原因是每家公司都试图了解客户的情绪,如果客户满意,他们会留下来。该项目可能显示出减少客户流失的途径。

数据集:情感分析数据集

http://ai.stanford.edu/~amaas/data/sentiment/

源代码:情感分析项目

https://data-flair.training/blogs/data-science-r-sentiment-analysis-project/


2.安然调查项目


项目构想:安然公司(Enron)在2000年倒闭,但可提供数据进行调查。该数据库包含500,000名在公司工作的真实员工的电子邮件,因此数据对于执行数据分析非常有用,许多数据科学家都使用此数据集。

数据集:安然调查数据集 https://www.cs.cmu.edu/~enron/


3.语音情感识别机器学习项目


4.png

项目构想:这是最好的机器学习项目之一。语音情感识别系统使用音频数据。它以语音的一部分作为输入,然后确定说话者以何种情绪说话。我们可以识别出不同的情绪,例如快乐,悲伤,惊讶,生气等。该项目可能有助于在与呼叫中心通话期间识别客户情绪。

数据集:语音情感识别数据集https://drive.google.com/file/d/1wWsrN2Ep7x6lWqOXfr4rpKGYrJhWc8z7/view

源代码:语音情感识别项目https://data-flair.training/blogs/python-mini-project-speech-emotion-recognition/


4.抓非法捕鱼项目


6.png

项目构想:这是一个有趣的机器学习项目。海洋上有许多船,船,不可能手动跟踪每个人的活动。这将是一个了不起的项目,它可以通过卫星和地理位置数据识别非法偷猎动物并捕捞捕鱼活动。Global Fishing Watch免费提供实时数据,可用于构建系统。

数据集:捕捉非法捕鱼数据集 https://globalfishingwatch.org/map-and-data/


5.使用协同过滤的在线杂货推荐


项目构想:协作过滤是一项很棒的技术,可根据相似用户的反应来过滤出用户可能喜欢的项目。杂货店推荐系统将是一个使客户意识到自己想要的东西的好项目。


6.使用机器学习的电影推荐系统


5.png

项目构想:推荐系统无处不在,无论是在线购买应用程序,电影流媒体应用程序还是音乐流媒体。他们都根据目标客户推荐产品。电影推荐系统是增强你的作品集的绝佳项目。

数据集:电影推荐系统数据集

 https://drive.google.com/file/d/1Dn1BZD3YxgBQJSIjbfNnmCFlDW2jdQGD/view

源代码:电影推荐系统项目

 https://data-flair.training/blogs/data-science-r-movie-recommendation/


7.车牌自动识别系统


项目构想:该机器学习项目的目的是检测和识别车辆的牌照号,并读取印在牌照上的牌照号。这可能是用于安全扫描,流量监视等的良好应用程序。

源代码:自动车牌识别项目

https://techvidvan.com/tutorials/python-project-license-number-plate-recognition/

相关报道:https://data-flair.training/blogs/machine-learning-project-ideas/

相关文章
|
7月前
|
机器学习/深度学习 人工智能 前端开发
机器学习PAI常见问题之web ui 项目启动后页面打不开如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
7月前
|
机器学习/深度学习 数据采集 监控
大模型开发:描述一个典型的机器学习项目流程。
机器学习项目涉及问题定义、数据收集、预处理、特征工程、模型选择、训练、评估、优化、部署和监控。每个阶段都是确保模型有效可靠的关键,需要细致操作。
96 0
|
7月前
|
TensorFlow 算法框架/工具 开发工具
使用 TensorFlow 构建机器学习项目:6~10(3)
使用 TensorFlow 构建机器学习项目:6~10(3)
54 0
|
21天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
28 6
|
23天前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
26 1
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
101 1
|
3月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
120 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
4月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
83 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
4月前
|
机器学习/深度学习 数据处理 定位技术
构建您的首个机器学习项目:从理论到实践
【8月更文挑战第28天】本文旨在为初学者提供一个简明的指南,通过介绍一个基础的机器学习项目——预测房价——来揭示机器学习的神秘面纱。我们将从数据收集开始,逐步深入到数据处理、模型选择、训练和评估等环节。通过实际操作,你将学会如何利用Python及其强大的科学计算库来实现自己的机器学习模型。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你打开一扇通往机器学习世界的大门。
|
4月前
|
机器学习/深度学习 数据可视化 数据处理
Python vs R:机器学习项目中的实用性与生态系统比较
【8月更文第6天】Python 和 R 是数据科学和机器学习领域中最受欢迎的两种编程语言。两者都有各自的优点和适用场景,选择哪种语言取决于项目的具体需求、团队的技能水平以及个人偏好。本文将从实用性和生态系统两个方面进行比较,并提供代码示例来展示这两种语言在典型机器学习任务中的应用。
122 1