如何让AI具有通用能力?新研究:让它睡觉

简介: 如何让AI具有通用能力?新研究:让它睡觉


编辑:泽南、陈萍

为让 AI 不再健忘,科学家们想尽了办法。

神经网络可以在很多任务上有超越人类的表现,但如果你要求一个 AI 系统吸收新的记忆,它们可能会瞬间忘记之前所学的内容。现在,一项新的研究揭示了神经网络经历睡眠阶段并帮助预防这种健忘症的新方法。人工神经网络面临的一个主要挑战是「灾难性遗忘」(catastrophic forgetting)。当它们去学习一项新任务时,就有一种不幸的倾向,即突然完全忘记他们以前学到的东西。

本质上,神经网络对数据的表示是对原始数据的一种面向任务的数据「压缩」,新学到的知识会覆盖过去的数据。


这是当前技术相比人类神经网络的最大缺陷之一:相比之下,人脑能够终身学习新任务,而不会影响其执行先前记忆的任务的能力。我们并不完全知晓其中原因,但早有研究表明,当学习轮次穿插在睡眠期间时,人脑的学习效果最好。睡眠显然有助于将最近的经历纳入长期记忆库。
「重组记忆实际上可能是生物体需要经历睡眠阶段的主要原因之一,」加州大学圣地亚哥分校计算神经科学家 Erik Delanois 说道。AI 能不能也学会去睡觉?此前的一些研究试图通过让 AI 模拟睡眠来解决灾难性遗忘。例如,当神经网络学习一项新任务时,一种称为交错训练(interleaved training)的策略会同时向机器提供它们之前学习过的旧数据,以帮助它们保留过去的知识。这种方法以前被认为是模仿大脑在睡眠期间的工作方式——不断重播旧的记忆。然而,科学家们曾假设交错训练需要在神经网络每次想要学习新事物时,为其提供最初用于学习旧技能的所有数据。这不仅需要大量的时间和数据,而且看起来也不是生物大脑在真正的睡眠中所做的事情——生物既没有能力保留学习旧任务所需的所有数据,睡觉时也没有时间重播所有这些内容。在一项新研究中,研究人员分析了灾难性遗忘背后的机制以及睡眠对于预防问题的效果。研究人员没有使用传统的神经网络,而是使用了一种更接近人类大脑的「脉冲神经网络」。在人工神经网络中,被称为神经元的组件被填喂数据并共同解决一个问题,例如识别人脸。神经网络反复调整突触——它的神经元之间的联系——并查看由此产生的行为模式是否能更好地找到解决方案。随着时间的推移(不断训练),网络会发现哪些模式最适合计算正确结果。最后它采用这些模式作为默认模式,这被认为是部分模仿了人脑的学习过程。

这张图代表了抽象突触空间中的记忆及其在睡眠和不睡眠时的演化。

在人工神经网络中,神经元的输出随着输入的变化而不断变化。相比之下,在脉冲神经网络(SNN)中,一个神经元只有在给定数量的输入信号后,才会产生输出信号,这一过程是对真正生物神经元行为的真实再现。由于脉冲神经网络很少发射脉冲,因此它们比典型的人工神经网络传输的数据更少,原则上也需要更少的电力和通信带宽。正如预期的那样,脉冲神经网络具有这样一个特点:在初始学习过程中会出现灾难性遗忘,然而,在之后的几轮学习后,经过一段时间间隔,参与学习第一个任务的神经元集合被重新激活。这更接近神经科学家目前认为的睡眠过程。简单来说就是:SNN 使得之前学习过的记忆痕迹能够在离线处理睡眠期间自动重新激活,并在不受干扰的情况下修改突触权重。该研究使用带有强化学习的多层 SNN 来探索将新任务训练周期与类睡眠自主活动周期交错,是否可以避免灾难性遗忘。值得注意的是,该研究表明,可以通过周期性地中断新任务中的强化学习(类似睡眠阶段的新任务)来预防灾难性遗忘。图 1A 显示了一个前馈脉冲神经网络,用于模拟信号从输入到输出。位于输入层 (I) 和隐藏层 (H) 之间的神经元接受无监督学习 (使用非奖励 STDP),H 层和输出(O) 层之间的神经元则接受强化学习(使用奖励 STDP 实现)。

无监督学习允许隐藏层神经元学习来自输入层不同空间位置的不同粒子(particle)模式,而奖励 STDP 使输出层神经元学习基于输入层检测到的粒子模式类型的运动决策。



研究人员对网络进行了两项互补的训练。在任一任务中,网络都学会了区分奖励和惩罚的粒子模式,目标是获得尽可能多的奖励。任务将模式可辨性(消耗的奖励与惩罚粒子的比率)视为性能的衡量标准,机会为 0.5。所有报告的结果都基于至少 10 次具有不同随机网络初始化的试验。
为了揭示训练和睡眠期间的突触权重动态,研究人员接下来追踪「任务相关」的突触,即在特定任务训练后在分布的前 10% 中识别的突触。首先训练任务 1,然后训练任务 2,在每次任务训练后识别任务相关突触。接下来再次继续训练任务 1,但将其与睡眠时间交织在一起(交错训练):T1→T2→InterleavedS,T1。任务 1 - 任务 2 的顺序训练导致忘记了任务 1,但是在 InterleavedS 之后,任务 1 被重新学习,而任务 2 也被保留(图 4A 和 4B)。
重要的是,该策略允许我们比较 InterleavedS,T1 训练后的突触权重与单独任务 1 和任务 2 训练后被识别为任务相关的突触权重(图 4C)。任务 1 训练后形成的任务 1 相关突触的分布结构(图 4C;左上)在任务 2 训练(中上)后被破坏,但在 InterleavedS、T1 训练(右上)后部分恢复。任务 2 训练(中下)后任务 2 相关突触的分布结构在任务 1 训练(左下)后不存在,并且在 InterleavedS、T1 训练(右下)后部分保留。
应该注意的是,这种定性模式可以在单个试验中清楚地观察到(图 4C;蓝色条),也可以在试验中推广(图 4C;橙线)。因此,睡眠可以在合并新突触的同时保留重要的突触
图 4. 新任务训练与睡眠的交错期允许整合与新任务相关的突触信息,同时保留旧任务信息。
「有趣的是,我们没有明确存储与早期记忆相关的数据,以便在睡眠期间人为地重放它们,以防止遗忘,」该研究的合著者、捷克科学院计算机科学研究所的计算神经科学家 Pavel Sanda 说道。
人们发现,新的策略有助于防止灾难性遗忘。脉冲神经网络在经历类似睡眠的阶段后能够执行这两项任务,研究人员认为他们的策略有助于保留与新旧任务相关的突触模式。
「我们的工作展现了开发受生物学启发的解决方案的实用性,」Delanois 说道。
研究人员指出,他们的发现不仅限于脉冲神经网络。Sanda 表示,即将开展的工作表明,类似睡眠的阶段可以帮助「克服标准人工神经网络中的灾难性遗忘」。

该研究于 11 月 18 日发表在《PLOS Computational Biology》杂志上。


论文:《Sleep prevents catastrophic forgetting in spiking neural networks by forming a joint synaptic weight representation》



论文地址:https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010628


参考链接:https://spectrum.ieee.org/catastrophic-forgetting-deep-learning


相关文章
|
10天前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
17 1
|
16天前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
32 6
|
4月前
|
人工智能 Cloud Native API
Higress 重磅更新:AI 能力全面开源,云原生能力再升级
Higress 最新的 1.4 版本基于为通义千问,以及多家云上 AGI 厂商客户提供 AI 网关的积累沉淀,开源了大量 AI 原生的网关能力。同时也在 Ingress、可观测、流控等云原生能力上做了全方位升级。
21361 273
|
24天前
|
人工智能 自然语言处理 机器人
MIT新研究揭秘AI洗脑术!AI聊天诱导人类编造记忆,真假难辨
麻省理工学院的一项新研究《基于大型语言模型的对话式AI在证人访谈中加剧虚假记忆》显示,使用生成式聊天机器人进行犯罪证人访谈会显著增加参与者的虚假记忆,且影响持久。研究设置了对照组、问卷访谈、预设脚本及生成式聊天机器人四种条件,结果显示生成式聊天机器人诱导的虚假记忆数量远超其他方法。尽管AI技术在效率和准确性方面潜力巨大,但在敏感领域需谨慎应用,并需进一步评估风险,制定伦理准则和监管措施。论文详细内容见[这里](https://arxiv.org/abs/2408.04681)。
35 2
|
2月前
|
存储 人工智能 JavaScript
根据Accenture的研究,CEO和CFO谈论AI和GenAI是有原因的
数字化转型与当前GenAI领导者之间的关键区别在于,CEO和CFO(而非CIO)似乎参与了指导AI投资的过程。例如,Accenture在2024年1月报告称,到2023年底,在财报电话会议中提到AI的次数几乎达到4万次,因为C级领导层正在为“重大技术变革”做好准备
38 0
|
3月前
|
边缘计算 人工智能 监控
边缘计算与AI结合的场景案例研究
【8月更文第17天】随着物联网(IoT)设备数量的爆炸性增长,对实时数据处理的需求也随之增加。传统的云计算模型在处理这些数据时可能会遇到延迟问题,尤其是在需要即时响应的应用中。边缘计算作为一种新兴的技术趋势,旨在通过将计算资源更靠近数据源来解决这个问题。本文将探讨如何将人工智能(AI)技术与边缘计算结合,以实现高效的实时数据分析和决策制定。
178 1
|
4月前
|
Web App开发 机器学习/深度学习 人工智能
AI Agent满级进化!骑马种田、办公修图,样样精通,昆仑万维等发布通用Agent新框架
【7月更文挑战第23天】AI Agent技术迎来突破,昆仑万维联合顶尖学府发布Cradle框架,赋能智能体通用控制能力。Cradle结合大型语言模型与六大核心模块,实现跨场景灵活操控,从游戏到办公软件,无师自通。实验验证其在《荒野大镖客2》等游戏及Chrome、Outlook上的卓越表现。框架开源,促进AI社区进步,但仍需面对实际应用的挑战与安全性考量。[论文](https://arxiv.org/abs/2403.03186)详述创新细节。
116 3
|
4月前
|
数据采集 机器学习/深度学习 人工智能
AI小分子药物发现的百科全书,康奈尔、剑桥、EPFL等研究者综述登Nature子刊
【7月更文挑战第12天】康奈尔、剑桥及EPFL科学家合作,详述AI在药物发现中的突破与挑战[^1]。AI现用于新化合物生成、现有药物优化及再利用,加速研发进程。尽管取得进展,可解释性不足、数据质量和伦理监管仍是待解难题。 [^1]: [论文链接](https://www.nature.com/articles/s42256-024-00843-5)
60 3
|
5月前
|
存储 人工智能 Kubernetes
[AI OpenAI] 保护前沿AI研究基础设施的安全
概述支持OpenAI前沿AI模型安全训练的架构。
[AI OpenAI] 保护前沿AI研究基础设施的安全
|
5月前
|
人工智能 安全 网络安全
简述AI漏洞修复研究现状及发展方向
鲁军磊先生的演讲聚焦AI在网络安全中的应用,特别是自动化漏洞修复。他讨论了大模型技术的最新进展,AI如何增强漏洞发现与修复,并介绍了AI智能体的三种协作模式。传统漏洞修复流程从手工审计到智能化挖掘逐步演进,而AI技术通过智能决策和自动化执行提高效率。未来趋势包括智能化防御、跨域协同、安全合规自动化、隐私保护强化和安全技能普及,以及可持续安全生态建设。AI正重塑网络安全领域,推动更高效、精准的防御策略。

热门文章

最新文章