Stable Diffusion采样速度翻倍!仅需10到25步的扩散模型采样算法(2)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Stable Diffusion采样速度翻倍!仅需10到25步的扩散模型采样算法

在实验中,DPM-Solver 获得了远超其它采样算法的加速效果,仅仅在 15-20 步就几乎可以收敛:


并且在论文中定量的结果显示,DPM-Solver 引入的额外计算量完全可以忽略,即对于步数的加速效果直接正比于时间上的加速效果——因此,基于 25 步的 DPM-Solver,Stable-Diffusion 模型的采样速度直接翻倍!例如,下图展示了不同采样算法在 Stable-Diffusion 上随着步数变化的效果,可见 DPM-Solver 在 10 到 15 步就可以获得非常高质量的采样:


使用 DPM-Solver


DPM-Solver 的使用非常简单,既可以基于作者提供的官方代码,也可以使用主流的 Diffusers 库。例如,基于作者提供的官方代码(https://github.com/LuChengTHU/dpm-solver),只需要 3 行:


官方代码对 4 种扩散模型都进行了支持:


并且同时支持 unconditional sampling、classifier guidance 和 classifier-free guidance:


而基于 Diffusers 库的 DPM-Solver 同样很简单,只需要定义 scheduler 即可:


此外,作者团队还提供了一个在线 Demo:https://huggingface.co/spaces/LuChengTHU/dpmsolver_sdm


下图是 15 步的例子,可以看到图像质量已经非常高:


相信基于 DPM-Solver,扩散模型的采样速度将不再是瓶颈。


关于作者


DPM-Solver 论文一作是来自清华大学 TSAIL 团队的路橙博士,他在知乎上关于扩散模型的讨论中也写了一篇关于扩散模型原理的入门介绍,目前已有 2000 + 赞:https://www.zhihu.com/question/536012286/answer/2533146567


清华大学 TSAIL 团队长期致力于贝叶斯机器学习的理论和算法研究,是国际上最早研究深度概率生成模型的团队之一,在贝叶斯模型、高效算法和概率编程库方面取得了系统深入的研究成果。团队另一位博士生鲍凡提出Analytic-DPM [8][9],为扩散模型的最优均值和方差给出了简单、令人吃惊的解析形式,获得 ICLR 2022 Outstanding Paper Award。在概率编程方面,机器之心早在 2017 年就报道了该团队发布的 “ZhuSuan” 深度概率编程库(https://zhusuan.readthedocs.io/en/latest/)[10],是国际上最早的面向深度概率模型的编程库之一。另外,值得一提的是,扩散概率模型的两位核心作者宋飏和宋佳铭,本科时均在朱军教授的指导下做科研训练,后来都去了斯坦福大学读博士。论文的合作者周聿浩、陈键飞、李崇轩,也是TSAIL组培养的优秀博士生,周聿浩为在读,陈键飞和李崇轩分别在清华大学计算机系、人民大学高瓴人工智能学院任教。


参考资料:

[1] OneFlow 版本的 Stable-Diffusion:https://github.com/Oneflow-Inc/diffusers/wiki/How-to-Run-OneFlow-Stable-Diffusion

[2] Luping Liu et al., 2022, Pseudo Numerical Methods for Diffusion Models on Manifolds, https://arxiv.org/abs/2202.09778

[3] Stable-Diffusion 的官方 Demo:https://huggingface.co/spaces/runwayml/stable-diffusion-v1-5

[4] Yang Song et al., 2021, Score-Based Generative Modeling through Stochastic Differential Equations, https://arxiv.org/abs/2011.13456

[5] Jonathan Ho et al., 2020, Denoising Diffusion Probabilistic Models,  https://arxiv.org/abs/2006.11239

[6] Tim Salimans & Jonathan Ho, 2022, Progressive Distillation for Fast Sampling of Diffusion Models, https://arxiv.org/abs/2202.00512

[7] Jiaming Song et al., 2020, Denoising Diffusion Implicit Models, https://arxiv.org/abs/2010.02502

[8] Fan Bao, et al., Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models, https://arxiv.org/abs/2201.06503[9] Fan Bao, et al. Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models, https://arxiv.org/abs/2206.07309v1[10] https://www.jiqizhixin.com/articles/2017-09-20-7

相关文章
|
10天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
89 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
119 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2月前
|
机器学习/深度学习 数据采集 算法
如何在一夜之间成为模型微调大师?——从零开始的深度学习修炼之旅,让你的算法功力飙升!
【10月更文挑战第5天】在机器学习领域,预训练模型具有强大的泛化能力,但直接使用可能效果不佳,尤其在特定任务上。此时,模型微调显得尤为重要。本文通过图像分类任务,详细介绍如何利用PyTorch对ResNet-50模型进行微调,包括环境搭建、数据预处理、模型加载与训练等步骤,并提供完整Python代码。通过调整超参数和采用早停策略等技巧,可进一步优化模型性能。适合初学者快速上手模型微调。
120 8
|
2月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
43 4

热门文章

最新文章

下一篇
DataWorks