ECCV 2022 | 谷歌提出Data-free NAS,网络搜索仅需一个预训练模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: ECCV 2022 | 谷歌提出Data-free NAS,网络搜索仅需一个预训练模型

神经网络架构搜索(NAS) 自 2016 年提出以来就广受关注,很多工作通过设计搜索空间,提升搜索算法等提升 NAS 的精度。今天这篇文章主要研究如何将 NAS 用于数据缺失的情况,文中提出 data-free NAS,该架构仅需要一个预训练模型,就可以自动进行网络搜索。目前该方法主要研究图片领域。


论文地址: https://arxiv.org/abs/2112.02086

代码地址: https://github.com/liuzechun/Data-Free-NAS


Data-free NAS 的架构非常简单,分为两步,第一步用预训练网络模型生成数据,第二步用生成的数据和预测的标签(label)来训练 NAS。


而挑战在于 NAS 需要利用生成的数据训练和评估搜索空间中数以百万计的网络架构的优劣,对他们进行排序。如果生成的数据不够多样,网络就很容易过拟合,所有网络都表现很好,就很难从中筛选出最优网络结构。因此,如何提高生成数据的多样性,使其能支持网络搜索的重任,就取决于生成算法的优劣了。


1. 图片生成算法


这篇文章不仅利用了损失函数计算导数来指导图片生成,还提出了循环生成语义更丰富的标签(recursive label calibration)和区域更新方法(regional update)来提升生成数据的丰富度。


1.1 Loss function


最基础的数据生成方式通过输入一张全是白噪声的图片到预训练网络中,通过计算输出的 logits 和目标标签的损失函数来计算导数,更新图片,并且添加正则化约束。


但这种方式生成的图片容易模式近似,多样性不足以支撑 NAS。


1.2 recursivelabel calibration

因此作者提出循环标签生成(recursive label calibration),主要基于的一个观察:自然图像作为预训练模型的输入时,模型输出的预测是一个分布,最大值是目标类,并且有其他几个峰值落在与之近似的类上。如下图所示,一张自然图像 “咖啡杯” 的预测包含 “咖啡杯” 和相关类“杯子”。


然而针对某一个标签生成的图片往往容易过拟合,从而有极大的预测值在该标签上,但无法发掘语义近似的标签之间的联系,比如下图的 (b) 中,针对“咖啡杯” 类合成的图像,预训练模型仅预测该图像为“咖啡杯”,使得图片过分强化咖啡杯的特征,且不像真实图片。


人们希望生成图片与真实图片尽可能接近,为了做到这点,可以先让生成图片和真实图片经过预训练网络后的预测(logits)尽可能相近。但是真实的训练数据与其 logits 无法获得,因此,作者提出 Recursive Label Calibration,利用循环放大预训练模型对生成图像在语义近似类上的预测值,生成 soft label,再用 soft label 来指导图片生成。


从图(c)中可以看出,使用 Recursive Label Calibration 合成的图像。它会自动将 “杯子” 标识为针对 “咖啡杯” 合成的图像的相关类,并且生成图像看起来也更自然。


1.3 regional update


此外,作者提出的区域更新(regional update),即在生成图片过程中,每次仅用导数更新图片的一个区域,比如针对于 ImageNet 数据集的生成数据仅更新 256×256 的图片范围中大小为 224×224 的随机范围。这样保证每一个 224×224 的范围都可以独立成为一幅生成图片,从而配合后续网络训练中用到的随机裁剪(random crop)数据增强算法。


整体的生成算法如上图所示:输入一张白噪声图片,在生成过程的每次迭代中,一个 224×224 区域是从 256×256 输入中随机裁剪的,利用通过 loss 计算的导数更新所选区域,直到白噪声收敛成合成图片。然后使用预训练模型对合成图像的预测作为软标签(soft label)来指导下一批从白噪声到图片的生成,从而循环生成 soft-label 和与之对应的图片。


2. 可视化和对照实验


这样,生成的图片相比于仅仅用损失函数生成的图片来得更佳多样化,也更接近真实图片:


同时,作者做了多组对比实验,来分析生成图片对于 NAS 标定不同网络结构好坏的准确性的影响。通过计算用生成图片训练网络的精度和用真实数据训练的网络精度之间的一致性,作者分析得出,使用所提出的 recursive label calibration 和 regional update 可以大大提高一致性,使得 NAS 更容易搜索得到最优网络:


3. Data-free NAS 实验结果


最后,作者用生成图片和生成图片对应的预训练网络预测值来指导 NAS 训练,结合三种常见的 NAS 方法,得到 data-free NAS,包括用基于导数的搜索算法 DSRTS [1],基于遗传算法的 SPOS[2],和基于强化学习算法的 ProxylessNAS[3]。


实验结果表明,结合不同的搜索算法,data-free NAS 都能搜索出和用真实图片搜索得到的结构效果相近甚至更好的网络结构,表明了 data-free NAS 的可行性。


Data-free DARTS :


Data-free SPOS :


Data-free ProxylessNAS :


更多结果和方法细节可以参考原论文。


参考文献:

[1] Liu, H., Simonyan, K., Yang, Y., et al.: Darts: Differentiable architecture search. In: International Conference on Learning Representations (2019)

[2] Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420 (2019)

[3] Cai, H., Zhu, L., Han, S., et al.: Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332 (2018) 

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
相关文章
|
4月前
|
消息中间件 存储 Serverless
函数计算产品使用问题之怎么访问网络附加存储(NAS)存储模型文件
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
13天前
|
5G 数据安全/隐私保护
如果已经链接了5Gwifi网络设备是否还能搜索到其他5Gwifi网络
当设备已经连接到一个5G Wi-Fi网络时,它仍然有能力搜索和发现其他可用的5G Wi-Fi网络。这里所说的“5G Wi-Fi”通常指的是运行在5GHz频段的Wi-Fi网络,而不是与移动通信中的5G网络(即第五代移动通信技术)混淆。
|
2月前
|
存储 网络协议 数据挖掘
|
4月前
|
存储 Ubuntu Linux
揭开自制NAS的神秘面纱:一步步教你如何用Linux打造专属网络存储王国!
【8月更文挑战第22天】构建Linux NAS系统是技术爱好者的热门项目。通过选择合适的发行版如Alpine Linux或Ubuntu Server,并利用现有硬件,你可以创建一个高效、可定制的存储解决方案。安装Linux后,配置网络设置确保可达性,接着安装Samba或NFS实现文件共享。设置SSH服务方便远程管理,利用`rsync`与`cron`进行定期备份。还可添加Web界面如Nextcloud提升用户体验。这一过程不仅节约成本,还赋予用户高度的灵活性和控制权。随着技术发展,Linux NAS方案持续进化,为用户带来更丰富的功能和可能性。
151 1
|
4月前
|
机器学习/深度学习 算法 文件存储
【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
62 9
|
4月前
|
存储 机器学习/深度学习 分布式计算
HDFS与网络附加存储(NAS)的比较
【8月更文挑战第31天】
120 0
|
5月前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
5月前
|
Linux 网络安全 数据安全/隐私保护
网络安全教程-------渗透工具Kali,官网链接,ARM的介绍,Mobil,华为小米,oppe手机,是无法刷入第三方的操作系统的,E+手机,谷歌的picksoul,或者三星手机,系统盘是WSL的
网络安全教程-------渗透工具Kali,官网链接,ARM的介绍,Mobil,华为小米,oppe手机,是无法刷入第三方的操作系统的,E+手机,谷歌的picksoul,或者三星手机,系统盘是WSL的
|
存储 运维 监控
阿里云的文件存储NAS使用心得
阿里云的文件存储NAS使用心得
388 0

热门文章

最新文章

下一篇
DataWorks