2.4、Training Strategy
Large Mini-batch Distributed Training
Label Smoothing
Auto Augmentation
Mixup Training
Large Crop Size
Regularization
2.5、实验结果
分类任务
目标检测任务
实例分割任务
语义分割
2.6、ResNeSt实现代码
2.6.1、splat.py
"""Split-Attention""" import torch from torch import nn import torch.nn.functional as F from torch.nn import Conv2d, Module, Linear, BatchNorm2d, ReLU from torch.nn.modules.utils import _pair __all__ = ['SplAtConv2d'] class SplAtConv2d(Module): """Split-Attention Conv2d """ def __init__(self, in_channels, channels, kernel_size, stride=(1, 1), padding=(0, 0), dilation=(1, 1), groups=1, bias=True, radix=2, reduction_factor=4, rectify=False, rectify_avg=False, norm_layer=None, dropblock_prob=0.0, **kwargs): super(SplAtConv2d, self).__init__() padding = _pair(padding) self.rectify = rectify and (padding[0] > 0 or padding[1] > 0) self.rectify_avg = rectify_avg inter_channels = max(in_channels*radix//reduction_factor, 32) self.radix = radix self.cardinality = groups self.channels = channels self.dropblock_prob = dropblock_prob if self.rectify: from rfconv import RFConv2d self.conv = RFConv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation, groups=groups*radix, bias=bias, average_mode=rectify_avg, **kwargs) else: self.conv = Conv2d(in_channels, channels*radix, kernel_size, stride, padding, dilation, groups=groups*radix, bias=bias, **kwargs) self.use_bn = norm_layer is not None if self.use_bn: self.bn0 = norm_layer(channels*radix) self.relu = ReLU(inplace=True) self.fc1 = Conv2d(channels, inter_channels, 1, groups=self.cardinality) if self.use_bn: self.bn1 = norm_layer(inter_channels) self.fc2 = Conv2d(inter_channels, channels*radix, 1, groups=self.cardinality) if dropblock_prob > 0.0: self.dropblock = DropBlock2D(dropblock_prob, 3) self.rsoftmax = rSoftMax(radix, groups) def forward(self, x): x = self.conv(x) if self.use_bn: x = self.bn0(x) if self.dropblock_prob > 0.0: x = self.dropblock(x) x = self.relu(x) batch, rchannel = x.shape[:2] if self.radix > 1: splited = torch.split(x, rchannel//self.radix, dim=1) gap = sum(splited) else: gap = x gap = F.adaptive_avg_pool2d(gap, 1) gap = self.fc1(gap) if self.use_bn: gap = self.bn1(gap) gap = self.relu(gap) atten = self.fc2(gap) atten = self.rsoftmax(atten).view(batch, -1, 1, 1) if self.radix > 1: attens = torch.split(atten, rchannel//self.radix, dim=1) out = sum([att*split for (att, split) in zip(attens, splited)]) else: out = atten * x return out.contiguous() class rSoftMax(nn.Module): def __init__(self, radix, cardinality): super().__init__() self.radix = radix self.cardinality = cardinality def forward(self, x): batch = x.size(0) if self.radix > 1: x = x.view(batch, self.cardinality, self.radix, -1).transpose(1, 2) x = F.softmax(x, dim=1) x = x.reshape(batch, -1) else: x = torch.sigmoid(x) return x
2.6.2、resnet.py
"""ResNet variants""" import math import torch import torch.nn as nn from .splat import SplAtConv2d __all__ = ['ResNet', 'Bottleneck'] class DropBlock2D(object): def __init__(self, *args, **kwargs): raise NotImplementedError class GlobalAvgPool2d(nn.Module): def __init__(self): """Global average pooling over the input's spatial dimensions""" super(GlobalAvgPool2d, self).__init__() def forward(self, inputs): return nn.functional.adaptive_avg_pool2d(inputs, 1).view(inputs.size(0), -1) class Bottleneck(nn.Module): """ResNet Bottleneck """ # pylint: disable=unused-argument expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1, bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False, rectified_conv=False, rectify_avg=False, norm_layer=None, dropblock_prob=0.0, last_gamma=False): super(Bottleneck, self).__init__() group_width = int(planes * (bottleneck_width / 64.)) * cardinality self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) self.bn1 = norm_layer(group_width) self.dropblock_prob = dropblock_prob self.radix = radix self.avd = avd and (stride > 1 or is_first) self.avd_first = avd_first if self.avd: self.avd_layer = nn.AvgPool2d(3, stride, padding=1) stride = 1 if dropblock_prob > 0.0: self.dropblock1 = DropBlock2D(dropblock_prob, 3) if radix == 1: self.dropblock2 = DropBlock2D(dropblock_prob, 3) self.dropblock3 = DropBlock2D(dropblock_prob, 3) if radix >= 1: self.conv2 = SplAtConv2d( group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, radix=radix, rectify=rectified_conv, rectify_avg=rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif rectified_conv: from rfconv import RFConv2d self.conv2 = RFConv2d( group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, average_mode=rectify_avg) self.bn2 = norm_layer(group_width) else: self.conv2 = nn.Conv2d( group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(group_width) self.conv3 = nn.Conv2d( group_width, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes*4) if last_gamma: from torch.nn.init import zeros_ zeros_(self.bn3.weight) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) if self.dropblock_prob > 0.0: out = self.dropblock1(out) out = self.relu(out) if self.avd and self.avd_first: out = self.avd_layer(out) out = self.conv2(out) if self.radix == 0: out = self.bn2(out) if self.dropblock_prob > 0.0: out = self.dropblock2(out) out = self.relu(out) if self.avd and not self.avd_first: out = self.avd_layer(out) out = self.conv3(out) out = self.bn3(out) if self.dropblock_prob > 0.0: out = self.dropblock3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): """ResNet Variants Parameters ---------- block : Block Class for the residual block. Options are BasicBlockV1, BottleneckV1. layers : list of int Numbers of layers in each block classes : int, default 1000 Number of classification classes. dilated : bool, default False Applying dilation strategy to pretrained ResNet yielding a stride-8 model, typically used in Semantic Segmentation. norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; for Synchronized Cross-GPU BachNormalization). Reference: - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." """ # pylint: disable=unused-variable def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, num_classes=1000, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, rectified_conv=False, rectify_avg=False, avd=False, avd_first=False, final_drop=0.0, dropblock_prob=0, last_gamma=False, norm_layer=nn.BatchNorm2d): self.cardinality = groups self.bottleneck_width = bottleneck_width # ResNet-D params self.inplanes = stem_width*2 if deep_stem else 64 self.avg_down = avg_down self.last_gamma = last_gamma # ResNeSt params self.radix = radix self.avd = avd self.avd_first = avd_first super(ResNet, self).__init__() self.rectified_conv = rectified_conv self.rectify_avg = rectify_avg if rectified_conv: from rfconv import RFConv2d conv_layer = RFConv2d else: conv_layer = nn.Conv2d conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} if deep_stem: self.conv1 = nn.Sequential( conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width*2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), ) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False, **conv_kwargs) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) if dilated or dilation == 4: self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif dilation==2: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilation=1, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) else: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.avgpool = GlobalAvgPool2d() self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, norm_layer): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None, dropblock_prob=0.0, is_first=True): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append(nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append(nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append(norm_layer(planes * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) elif dilation == 4: layers.append(block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) else: raise RuntimeError("=> unknown dilation size: {}".format(dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=dilation, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) #x = x.view(x.size(0), -1) x = torch.flatten(x, 1) if self.drop: x = self.drop(x) x = self.fc(x) return x
2.6.3、ablation.py
"""ResNeSt ablation study models""" import torch from .resnet import ResNet, Bottleneck __all__ = ['resnest50_fast_1s1x64d', 'resnest50_fast_2s1x64d', 'resnest50_fast_4s1x64d', 'resnest50_fast_1s2x40d', 'resnest50_fast_2s2x40d', 'resnest50_fast_4s2x40d', 'resnest50_fast_1s4x24d'] _url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' _model_sha256 = {name: checksum for checksum, name in [ ('d8fbf808', 'resnest50_fast_1s1x64d'), ('44938639', 'resnest50_fast_2s1x64d'), ('f74f3fc3', 'resnest50_fast_4s1x64d'), ('32830b84', 'resnest50_fast_1s2x40d'), ('9d126481', 'resnest50_fast_2s2x40d'), ('41d14ed0', 'resnest50_fast_4s2x40d'), ('d4a4f76f', 'resnest50_fast_1s4x24d'), ]} def short_hash(name): if name not in _model_sha256: raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) return _model_sha256[name][:8] resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for name in _model_sha256.keys() } def resnest50_fast_1s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=1, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_1s1x64d'], progress=True, check_hash=True)) return model def resnest50_fast_2s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_2s1x64d'], progress=True, check_hash=True)) return model def resnest50_fast_4s1x64d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=4, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_4s1x64d'], progress=True, check_hash=True)) return model def resnest50_fast_1s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=1, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_1s2x40d'], progress=True, check_hash=True)) return model def resnest50_fast_2s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_2s2x40d'], progress=True, check_hash=True)) return model def resnest50_fast_4s2x40d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=4, groups=2, bottleneck_width=40, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_4s2x40d'], progress=True, check_hash=True)) return model def resnest50_fast_1s4x24d(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=1, groups=4, bottleneck_width=24, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50_fast_1s4x24d'], progress=True, check_hash=True)) return model
2.6.4、resnest.py
"""ResNeSt models""" import torch from .resnet import ResNet, Bottleneck __all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] _url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' _model_sha256 = {name: checksum for checksum, name in [ ('528c19ca', 'resnest50'), ('22405ba7', 'resnest101'), ('75117900', 'resnest200'), ('0cc87c48', 'resnest269'), ]} def short_hash(name): if name not in _model_sha256: raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) return _model_sha256[name][:8] resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for name in _model_sha256.keys() } def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest50'], progress=True, check_hash=True)) return model def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest101'], progress=True, check_hash=True)) return model def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest200'], progress=True, check_hash=True)) return model def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 30, 48, 8], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest269'], progress=True, check_hash=True)) return model