【深度学习】3、正则化技术全面了解(二)

简介: 【深度学习】3、正则化技术全面了解(二)

6、 Dropout


   Bagging是通过结合多个模型降低泛化误差的技术,主要的做法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。而Dropout可以被认为是集成了大量深层神经网络的Bagging方法, 因此它提供了一种廉价的Bagging集成近似方法,能够训练和评估值数据数量的神经网络。

   Dropout指暂时丢弃一部分神经元及其连接。随机丢弃神经元可以防止过拟合,同时指数级、高效地连接不同网络架构。神经元被丢弃的概率为1 - p,减少神经元之间的共适应。隐藏层通常以0.5的概率丢弃神经元。使用完整网络(每个节点的输出权重为 p)对所有 2^n 个dropout神经元的样本平均值进行近似计算。Dropout显著降低了过拟合,同时通过避免在训练数据上的训练节点提高了算法的学习速度。


7、 Drop Connect


   Drop Connect是另一种减少算法过拟合的正则化策略,是 Dropout的一般化。在Drop Connect的过程中需要将网络架构权重的一个随机选择子集设置为零,取代了在Dropout中对每个层随机选择激活函数的子集设置为零的做法。由于每个单元接收来自过去层单元的随机子集的输入,Drop Connect和 Dropout都可以获得有限的泛化性能。Drop Connect和 Dropout相似的地方在于它涉及在模型中引入稀疏性,不同之处在于它引入的是权重的稀疏性而不是层的输出向量的稀疏性。


8、 最大约束范式


   最大约束范式就是对权值进行约束,限制权值的大小,对每个神经元的权重绝对值给予限制。实际操作中先对所有参数进行正常的更新,然后通过限制每个神经元的权重矢量使其满足关系式:

0dbc32f1eb82ddc9db51101aa7fea770.png

   其中c∈R常用取值为3或4。最大约束范式的特点是对权值的更新进行了约束,即使学习率很大,也不会因网络参数发生膨胀导致过拟合。


9、 基于优化过程的正则化:早停法


   早停法可以限制模型最小化代价函数所需的训练迭代次数。早停法通常用于防止训练中过度表达的模型泛化性能差。如果迭代次数太少,算法容易欠拟合(方差较小,偏差较大),而迭代次数太多,算法容易过拟合(方差较大,偏差较小)。早停法通过确定迭代次数解决这个问题,不需要对特定值进行手动设置。


10、 基于函数模型的正则化


10.1、 参数共享

   在同一网络的多个部分中重用一定的可训练参数,这种方法称为权值共享。当两个模型执行足够相似的分类任务并且具有相似的输入/输出分布时,模型参数之间应当存在一些相关性, 这时认为模型参数具有一定的可重用性,应用这一正则化方法可以使得模型比使用单独训练参数的模型更加简单。


   目前,较为广泛地应用权重共享作为正则化方法的模型之一是卷积神经网络,它通过在图像的多位置共享权值参数从而对有关特征提取的平移不变性和局部性的先验知识进行了编码。此外,权重共享有效降低了卷积神经网络中需要学习的权重的参数数量,支持网络在不断增加训练数据的同时向更深处进行扩展。使用权值共享的模型的另一个例子就是自动编码器,将编码部分与相应的Sigmoid层参数共享,实现网络的构建。

10.2、 噪声标签

   在模型输入部分添加噪声是数据集扩增的一种主要方式。将噪声添加到模型的隐藏单元可以得到常用的噪声模型;噪声模型的例子就是循环神经网络,通过噪声添加到模型权重从而转换到一个有关权重的贝叶斯推断的随机实现。通过贝叶斯推理的学习过程表现权重的不确定性,是一种使用的随机方法,此外,随机池化通过向模型的各个部分注入随机噪声赋予模型随机性实现了确定性模型随机泛化。向输出目标添加噪声的一个重要应用就是标签平滑。

10.3、 标签平滑

标签平滑通过将 softmax 函数明确分类结果替换为有关输出数量的比值, 对模型进行正则化, 它的优势就是能够防止模型陷入精确概率求解并且不影响正常的分类结果, 与之相关的正则化方法是 Mixup。令 x 为样本, y 为标签, 我们可以从训练数据(xi,yi)和(xj,yj)中创造出虚拟训练样本, 用于增强数据集的鲁棒性:

权重λ 是随机数, 线性混合方法是简单的点对点混合。  

10.4、 多任务学习

   多任务学习是一种比较复杂的正则化方法,通过合并多个任务中的样例提高网络泛化。它可以与半监督学习进行结合,从而实现无标记的数据在辅助任务上的应用。在元学习中也使用类似的任务共享概念,即来自同一个领域的多个任务按顺序学习并使用之前获得知识作为新任务的偏置;而在迁移学习中则将来自于一个领域的知识迁移到另一个领域,从而实现多任务学习。

相关文章
|
10天前
|
机器学习/深度学习 人工智能 大数据
基于深度学习的图像识别技术最新进展####
近年来,深度学习在图像识别领域取得了显著突破,本文综述了该领域的最新研究进展,特别关注卷积神经网络(CNN)的优化与创新、数据集扩充与增强策略、以及模型压缩与加速技术。通过对比分析不同网络结构和训练技巧,揭示了提升图像识别精度与效率的关键因素。此外,探讨了小样本学习、迁移学习在实际应用中的挑战与解决方案,为未来研究方向提供了新的视角和思路。 ####
48 8
|
6天前
|
机器学习/深度学习 自然语言处理 网络架构
深度学习中的正则化技术:从理论到实践
在深度学习的海洋中,正则化技术如同灯塔指引着模型训练的方向。本文将深入探讨正则化的核心概念、常见类型及其在防止过拟合中的应用。通过实例分析,我们将展示如何在实践中运用这些技术以提升模型的泛化能力。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
49 7
|
14天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第36天】在当今科技飞速发展的时代,深度学习已成为人工智能领域的一颗璀璨明珠。本文将深入探讨深度学习在图像识别方面的技术原理和应用实例,旨在为读者提供一个全面而深入的了解。我们将从基础理论出发,逐步揭示深度学习如何革新了我们对图像数据的处理和理解方式。
|
20天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
37 7
|
17天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【10月更文挑战第34天】本文将探讨深度学习在图像识别领域的应用,并介绍如何利用Python和TensorFlow库实现一个简单的图像分类模型。我们将从基本原理出发,逐步讲解数据准备、模型构建、训练过程以及结果评估等关键步骤。通过本文的学习,读者可以了解到深度学习在图像识别中的强大能力,并掌握如何使用现代工具和技术来解决实际问题。
43 2
|
3天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
17 8
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
7天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
下一篇
无影云桌面