GAN、扩散模型应有尽有,CMU出品的生成模型专属搜索引擎Modelverse来了

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
NLP自然语言处理_高级版,每接口累计50万次
简介: GAN、扩散模型应有尽有,CMU出品的生成模型专属搜索引擎Modelverse来了

从前几年出尽风头的 GAN 到今年独占鳌头的 Stable Diffusion,预训练生成模型一直风头不减,相关论文、模型也是层出不穷。这就带来了一些问题:如何在众多模型中找到自己想要的那一个?如何找到对应模型的学习资料(比如代码库)?自己做了个新模型如何与更多的人分享(除了发推特)?


近日,卡内基梅隆大学助理教授朱俊彦等人开发了一个名为「Modelverse」的在线分享和搜索平台来解决这些问题。



Modelverse 是一个包含多种深度生成模型的模型共享和搜索平台,例如 GAN、扩散模型和自回归模型,题材包括动物、风景、肖像和艺术品等。你可以在这个平台上查找或者共享深度生成模型。



平台链接:https://modelverse.cs.cmu.edu/


平台提供的搜索方式是多样化的,你可以输入文字检索,也可以输入图像、简笔画或多模态信息检索。



比如,以一张飞机的简笔画作为输入,我们可以得到以下结果:



以大象的图片为输入,我们也能找到可以生成大象图像的 GAN 模型:




,时长00:42

那么,这些功能具体是怎么实现的呢?


在最新公布的论文中,作者进行了详细的介绍。



论文链接:https://arxiv.org/pdf/2210.03116.pdf

该搜索系统由预缓存阶段(a,b)和推理阶段(c)组成。给定一组模型,(a)首先为每个模型生成 50K 的样本。(b)然后将图像编码为图像特征并计算每个模型的一阶和二阶特征统计。统计数据被缓存在系统中,以提高效率。(c)在推理时,系统支持不同模式(文本、图像或草图)的查询。系统将查询编码为特征向量,并评估查询特征与每个模型的统计数据之间的相似性,由此检索具有最佳相似性度量的模型。



搜索结果

模型检索的定性结果。下面展示了三种不同模态的模型检索结果,分别是图像、草图、文本。


该系统还支持多模态查询 (下图左) ,并支持使用模型作为查询来查找相似的模型 (下图右)。



图像重建与编辑。随着生成模型数量的爆发式增长,用户越来越不可能了解每一个有趣的模型,但是为自己的特定用途选择正确的模型可能是至关重要的。下图显示,选择正确的生成模型进行图像查询可以得到更好的转换结果,从而更好地进行潜在空间插值和图像编辑。



但我们可以发现,这个搜索系统还存在一些局限性。如下图(左)所示,有时侯草图查询(例如,鸟的草图)会匹配具有抽象风格的模型。CLIP 特征是否与草图的形状、样式、纹理相匹配是不明确的。如下图(右)所示,对于彼此冲突的多模态查询(大象文本 + 狗图像),系统就难以检索具有这两个概念的模型——排名靠前的模型中没有大象模型。


随着平台上共享的模型越来越多,平台的搜索体验有望逐步改善。

相关文章
|
1月前
|
机器学习/深度学习 自然语言处理
【绝技揭秘】模型微调与RAG神技合璧——看深度学习高手如何玩转数据,缔造预测传奇!
【10月更文挑战第5天】随着深度学习的发展,预训练模型因泛化能力和高效训练而备受关注。直接应用预训练模型常难达最佳效果,需进行微调以适应特定任务。本文介绍模型微调方法,并通过Hugging Face的Transformers库演示BERT微调过程。同时,文章探讨了检索增强生成(RAG)技术,该技术结合检索和生成模型,在开放域问答中表现出色。通过实际案例展示了RAG的工作原理及优势,提供了微调和RAG应用的深入理解。
42 0
|
5月前
|
自然语言处理
斯坦福新研究:RAG能帮助LLM更靠谱吗?
【6月更文挑战第8天】斯坦福大学研究表明,检索增强生成(RAG)技术可提升大型语言模型(LLM)的准确性,但在不正确或矛盾的检索信息下,LLM可能产生误导性答案。研究发现,提供准确检索信息时,LLM准确率可达94%,但错误信息可能导致LLM重复错误。LLM对信息的依赖和内部知识的冲突是关键问题,提示技术的选择也会影响其行为。研究强调使用RAG需谨慎,并指出需要进一步探索LLM在复杂情况下的表现。
83 7
|
6月前
|
存储 自然语言处理 文字识别
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
2667 0
|
6月前
|
机器学习/深度学习 计算机视觉
【论文速递】ICLR2023 - 基于视觉语言预训练模型的医疗图像小样本学习及零样本推理性能研究
【论文速递】ICLR2023 - 基于视觉语言预训练模型的医疗图像小样本学习及零样本推理性能研究
106 0
|
机器学习/深度学习 人工智能 搜索推荐
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)(3)
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)
289 0
|
机器学习/深度学习 自然语言处理 算法
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)(2)
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)
428 0
|
机器学习/深度学习 自然语言处理 搜索推荐
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)(1)
DSSM、Youtube_DNN、SASRec、PinSAGE…你都掌握了吗?一文总结推荐系统必备经典模型(一)
342 0
|
机器学习/深度学习 自然语言处理 数据可视化
泛化神器 | 李沐老师新作进一步提升模型在多域多的泛化性,CV和NLP均有大幅度提升(文末获取论文)
泛化神器 | 李沐老师新作进一步提升模型在多域多的泛化性,CV和NLP均有大幅度提升(文末获取论文)
244 0
|
编解码 测试技术 网络架构
叫板DALL·E 2,预训练大模型做编码器,谷歌把文字转图像模型卷上天(2)
叫板DALL·E 2,预训练大模型做编码器,谷歌把文字转图像模型卷上天
179 0
|
编解码 人工智能 C++
叫板DALL·E 2,预训练大模型做编码器,谷歌把文字转图像模型卷上天(1)
叫板DALL·E 2,预训练大模型做编码器,谷歌把文字转图像模型卷上天
158 0
下一篇
无影云桌面