【云原生】容器编排技术Docker Compose

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
简介: 【云原生】容器编排技术Docker Compose

Compose为什么需要Docker

Docker帮助我们解决服务的打包安装的问题,随着而来的问题就是服务过多的带来如下问题:


多次使用Dockerfile Build Image或者DockerHub拉取Image;

需要创建多个Container,多次编写启动命令;

Container互相依赖的如何进行管理和编排;

当我们服务数量增多的时候,上面三个问题就会更加的被放大,如果这三个问题不解决,其实从虚拟机到容器化除了机器减少一些浪费以外,好像没有更多的变化。Docker有没有什么好的方法,可以让我们通过一个配置就搞定容器编排和运行呢?这个时候Docker Compose就站出来了。


Docker Compose可以做到以下几点:


提供工具用于定义和运行多个docker容器应用;

使用yaml文件来配置应用服务(docker-compse.yml);

可以通过一个简单的命令docker-compse up可以按照依赖关系启动所有服务;

可以通过一个简单的命令docker-compose down停止所有服务;

当一个服务需要的时候,可以很简单地通过–scale进行扩容;

Docker Compose有以下特征:


更高的可移植性,Docker Compose仅需一个docker-compse up可以完成按照依赖关系启动所有服务,然后使用docker-compose down轻松将其拆解。帮助我们更轻松地部署复杂的应用程序;

单个主机上的多个隔离环境,Compose可以使用项目名称将环境彼此隔离,这带可以在一台计算机上运行同一环境的多个副本,它可以防止不同的项目和服务相互干扰;

Docker Compose介绍

Docker Compose是一个工具,用于定义和运行多容器应用程序的工具;


Docker Compose通过yml文件定义多容器的docker应用;


Docker Compose通过一条命令根据yml文件的定义去创建或管理多容器;


28.png


Docker Compose 是用来做Docker 的多容器控制,是一个用来把 Docker 自动化的东西。有了 Docker Compose 你可以把所有繁复的 Docker 操作全都一条命令,自动化的完成。


Docker Compose安装

Docker Compose安装的最新的版本1.29.2,对于Mac和Windows安装好Docker以后,就已经安装好Docker Compose,不需要手动安装,这里的安装方式是基于Linux的Cnetos的,大家也可以参考官方网站去安装,


具体步骤如下:

下载 Docker Compose 二进制文件,版本1.29.2是目前最新最稳定的版本,要下载旧版本的大家可以更改版本号,可以参考github的版本号进行选择;

sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
  1. 对二进制文件应用可执行权限;
sudo chmod +x /usr/local/bin/docker-compose


  1. 安装以后通过docker-compose --version命令检查是否安装成功;

29.png


Docker Compose版本介绍

Docker Compose版本与引擎的对应关系如下,可以看到中间主要有两个版本2和版本3两种格式,目前大家使用比较多也就是这两种,对于这两个版本的差别给大家介绍一下:


v3 版本不支持 volume_from 、extends、group_add等属性;

cpu 和 内存属性的设置移到了 deploy 中;

v3 版本支持 Docker Swarm,而 v2 版本不支持;

注意:官方目前在 1.20.0 引入了一个新–compatibility标志,帮助开发人员轻松的过渡到v3,目前还有些问题官方还不建议直接使用到生产,建议大家直接上手v3版本。


30.png


30.png


Docker Compose基本命令介绍

Docker Compose命令基本上和Docker相差不多,主要就是对Docker Compose生命周期控制、日志格式等相关命令,可以通过docker-compose --help进行帮助。


#构建建启动nignx容器
docker-compose up -d nginx                     
#进入nginx容器中
docker-compose exec nginx bash            
#将会停止UP命令启动的容器,并删除容器
docker-compose down                             
#显示所有容器
docker-compose ps                                   
#重新启动nginx容器
docker-compose restart nginx                   
#构建镜像
docker-compose build nginx      
#不带缓存的构建
docker-compose build --no-cache nginx 
#查看nginx的日志
docker-compose logs  nginx                      
#查看nginx的实时日志
docker-compose logs -f nginx                   
#验证(docker-compose.yml)文件配置,
#当配置正确时,不输出任何内容,当文件配置错误,输出错误信息
docker-compose config  -q                        
#以json的形式输出nginx的docker日志
docker-compose events --json nginx       
#暂停nignx容器
docker-compose pause nginx                 
#恢复ningx容器
docker-compose unpause nginx             
#删除容器
docker-compose rm nginx                       
#停止nignx容器
docker-compose stop nginx                    
#启动nignx容器
docker-compose start nginx                 

Docker Compose实战

我们构建一个如下的应用,通过Nginx转发给后端的两个Java应用;


31.png


  1. 新建Spring Boot应用,增加一个HelloController,编写一个hello方法,返回请求的端口和IP;
/**
 * hello
 *
 * @author wangtongzhou
 * @since 2021-07-25 09:43
 */
@RestController
public class HelloController {
    @GetMapping("/hello")
    public String hello(HttpServletRequest req) throws UnknownHostException {
        return "hello";
    }
}
  1. 指定Spring Boot的启动入口;
  <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <!-- 指定该Main Class为全局的唯一入口 -->
                    <mainClass>cn.wheel.getway.WheelGetWay</mainClass>
                </configuration>
                <executions>
                    <execution>
                        <goals>
                            <!--可以把依赖的包都打包到生成的Jar包中-->
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
  1. 打包Spring Boot应用;
mvn package


  1. 上传文件到Linux服务器/usr/local/docker-compose-demo的目录;
  2. 在/usr/local/docker-compose-demo的目录编辑Dockerfile;
#指定基础镜像
FROM java:8
LABEL name="docker-compose-demo" version="1.0" author="wtz"
COPY ./getway-1.0-SNAPSHOT.jar ./docker-compose-demo.jar
#启动参数
CMD ["java","-jar","docker-compose-demo.jar"]
  1. 编辑docker-compose.yml文件;
version: '3.0'
networks:
  docker-compose-demo-net:
    driver: bridge
    ipam:
      config:
        - subnet: 192.168.1.0/24
          gateway: 192.168.1.1
services:
  docker-compose-demo01:
    build:
      #构建的地址
      context: /usr/local/docker-compose-demo
      dockerfile: Dockerfile
    image: docker-compose-demo
    container_name: docker-compose-demo01
    #选择网络
    networks:
      - docker-compose-demo-net
    #选择端口
    ports:
      - 8081:8080/tcp
    restart: always
  docker-compose-demo02:
    build:
      #构建的地址
      context: /usr/local/docker-compose-demo
      dockerfile: Dockerfile
    image: docker-compose-demo
    container_name: docker-compose-demo02
    #选择网络
    networks:
      - docker-compose-demo-net
    #选择端口
    ports:
      - 8082:8080/tcp
    restart: always
  nginx:
    image: nginx:latest
    container_name: nginx-demo
    networks:
      - docker-compose-demo-net
    ports:
      - 80:80/tcp
    restart: always
    volumes:
      - /usr/local/docker-compose-demo/nginx.conf:/etc/nginx/nginx.conf:rw
volumes:
  docker-compose-demo-volume: {}
  1. 编写nginx.conf,实现负载均衡到每个应用,这里通过容器名称访问,因此不需要管每个容器的ip是多少,这个也是自定义网络的好处;
user nginx;
worker_processes  1;
events {
    worker_connections  1024;
}
http {
    include       /etc/nginx/mime.types;
    default_type  application/octet-stream;
    sendfile        on;
    keepalive_timeout  65;
server {
    listen 80;
    location / {
     proxy_pass http://docker-compose-demo;
     proxy_set_header  Host $host;
       proxy_set_header  X-real-ip $remote_addr;
       proxy_set_header  X-Forwarded-For $proxy_add_x_forwarded_for;
    }
}
upstream docker-compose-demo{
   server docker-compose-demo01:8080;
   server docker-compose-demo02:8080;
}
include /etc/nginx/conf.d/*.conf;
server {
    listen 80;
    location / {
     proxy_pass http://docker-compose-demo;
     proxy_set_header  Host $host;
       proxy_set_header  X-real-ip $remote_addr;
       proxy_set_header  X-Forwarded-For $proxy_add_x_forwarded_for;
    }
}
upstream docker-compose-demo{
   server docker-compose-demo01:8080;
   server docker-compose-demo02:8080;
}
include /etc/nginx/conf.d/*.conf;
}

查看/usr/local/docker-compose-demo目录,有以下确保有以下四个文件;


32.png

  1. 检查docker-compose.yml的语法是否正确,如果不发生报错,说明语法没有发生错误;
    docker-compose config
  2. 启动docker-compose.yml定义的服务;
docker-compose up



33.png


  1. 验证服务是否正确;
#查看宿主机ip
ip add
#访问对应的服务
curl http://172.21.122.231/hello

34.png35.png


Docker Compose Yml文件介绍


version

指定使用的版本;


Services

每个Service代表一个Container,与Docker一样,Container可以是从DockerHub中拉取到的镜像,也可以是本地Dockerfile Build的镜像。


image

标明image的ID,这个image ID可以是本地也可以是远程的,如果本地不存在,Docker Compose会尝试pull下来;

image: ubuntu

build

该参数指定Dockerfile文件的路径,Docker Compose会通过Dockerfile构建并生成镜像,然后使用该镜像;

build:
  #构建的地址
  context: /usr/local/docker-compose-demo
  dockerfile: Dockerfile

orts

暴露端口,指定宿主机到容器的端口映射,或者只指定容器的端口,则表示映射到主机上的随机端口,一般采用主机:容器的形式来映射端口;

#暴露端口
ports:
  - 8081:8080/tcp

ports

暴露端口,指定宿主机到容器的端口映射,或者只指定容器的端口,则表示映射到主机上的随机端口,一般采用主机:容器的形式来映射端口;

#暴露端口
ports:
  - 8081:8080/tcp

expose

暴露端口,但不需要建立与宿主机的映射,只是会向链接的服务提供;


environment

加入环境变量,可以使用数组或者字典,只有一个key的环境变量可以在运行compose的机器上找到对应的值;


env_file

从一个文件中引入环境变量,该文件可以是一个单独的值或者一个列表,如果同时定义了environment,则environment中的环境变量会重写这些值;


depends_on

定义当前服务启动时,依赖的服务,当前服务会在依赖的服务启动后启动;


depends_on: 
  - docker-compose-demo02
  - docker-compose-demo01

deploy

该配置项在version 3里才引入,用于指定服务部署和运行时相关的参数;

replicas

指定副本数;


version: '3.4'
services:
  worker:
    image: nginx:latest
    deploy:
      replicas: 6

restart_policy

指定重启策略;

version: "3.4"
services:
  redis:
    image: redis:latest
    deploy:
      restart_policy:
        condition: on-failure   #重启条件:on-failure, none, any
        delay: 5s   # 等待多长时间尝试重启
        max_attempts: 3 #尝试的次数
        window: 120s    # 在决定重启是否成功之前等待多长时间

update_config

定义更新服务的方式,常用于滚动更新;

version: '3.4'
services:
  vote:
    image: docker-compose-demo
    depends_on:
      - redis
    deploy:
      replicas: 2
      update_config:
        parallelism: 2  # 一次更新2个容器
        delay: 10s  # 开始下一组更新之前,等待的时间
        failure_action:pause  # 如果更新失败,执行的动作:continue, rollback, pause,默认为pause
        max_failure_ratio: 20 # 在更新过程中容忍的失败率
        order: stop-first   # 更新时的操作顺序,停止优先(stop-first,先停止旧容器,再启动新容器)还是开始优先(start-first,先启动新容器,再停止旧容器),默认为停止优先,从version 3.4才引入该配置项

resources

限制服务资源;

version: '3.4'
services:
  redis:
    image: redis:alpine
    deploy:
      resources:
        #限制CPU的使用率为50%内存50M
        limits:
          cpus: '0.50'
          memory: 50M
        #始终保持25%的使用率内存20M
        reservations:
          cpus: '0.25'
          memory: 20M

healthcheck

执行健康检查;

healthcheck:
  test: ["CMD", "curl", "-f", "http://localhost"]   # 用于健康检查的指令
  interval: 1m30s   # 间隔时间
  timeout: 10s  # 超时时间
  retries: 3    # 重试次数
  start_period: 40s # 启动多久后开始检查

restart

重启策略;

#默认的重启策略,在任何情况下都不会重启容器
restart: "no"
#容器总是重新启动
restart: always
#退出代码指示失败错误,则该策略会重新启动容器
restart: on-failure
#重新启动容器,除非容器停止
restart: unless-stopped

networks

网络类型,可指定容器运行的网络类型;

#指定对应的网络
networks:
  - docker-compose-demo-net
networks:
  docker-compose-demo-net:
    driver: bridge
    ipam:
      config:
        - subnet: 192.168.1.0/24
          gateway: 192.168.1.1

ipv4_address, ipv6_address

加入网络时,为此服务指定容器的静态 IP 地址;

version: "3.9"
services:
  app:
    image: nginx:alpine
    networks:
      app_net:
        ipv4_address: 172.16.238.10
        ipv6_address: 2001:3984:3989::10
networks:
  app_net:
    ipam:
      driver: default
      config:
        - subnet: "172.16.238.0/24"
        - subnet: "2001:3984:3989::/64"

Networks

网络决定了服务之间以及服务和外界之间如何去通信,在执行docker-compose up的时候,docker会默认创建一个默认网络,创建的服务也会默认的使用这个默认网络。服务和服务之间,可以使用服务的名字进行通信,也可以自己创建网络,并将服务加入到这个网络之中,这样服务之间可以相互通信,而外界不能够与这个网络中的服务通信,可以保持隔离性。


Volumes

挂载主机路径或命名卷,指定为服务的子选项。可以将主机路径挂载为单个服务定义的一部分,无需在顶级volume中定义。如果想在多个服务中重用一个卷,则在顶级volumes key 中定义一个命名卷,将命名卷与服务一起使用。


总结

Docker Compose 的整体使用步骤还是比较简单的,三个步骤为:


使用 Dockerfile 文件定义应用程序的环境;

使用 docker-compose.yml 文件定义构成应用程序的服务,这样它们可以在隔离环境中一起运行;

最后,执行 docker-compose up 命令来创建并启动所有服务。

虽然 docker-compose.yml 文件详解和Compose 常用命令这两大块的内容比较多,但是如果要快速入门使用 Compose,其实只需要了解其中部分内容即可。后期大家可在项目生产环境中根据自身情况再进一步深入学习即可。


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2天前
|
运维 Cloud Native 虚拟化
一文吃透云原生 Docker 容器,建议收藏!
本文深入解析云原生Docker容器技术,涵盖容器与Docker的概念、优势、架构设计及应用场景等,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
一文吃透云原生 Docker 容器,建议收藏!
|
5天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
3天前
|
运维 Kubernetes Cloud Native
云原生技术入门及实践
【10月更文挑战第39天】在数字化浪潮的推动下,云原生技术应运而生,它不仅仅是一种技术趋势,更是企业数字化转型的关键。本文将带你走进云原生的世界,从基础概念到实际操作,一步步揭示云原生的魅力和价值。通过实例分析,我们将深入探讨如何利用云原生技术提升业务灵活性、降低成本并加速创新。无论你是云原生技术的初学者还是希望深化理解的开发者,这篇文章都将为你提供宝贵的知识和启示。
|
5天前
|
Cloud Native 持续交付 云计算
云原生技术入门与实践
【10月更文挑战第37天】本文旨在为初学者提供云原生技术的基础知识和实践指南。我们将从云原生的概念出发,探讨其在现代软件开发中的重要性,并介绍相关的核心技术。通过实际的代码示例,我们展示了如何在云平台上部署和管理应用,以及如何利用云原生架构提高系统的可伸缩性、弹性和可靠性。无论你是云原生领域的新手,还是希望深化理解的开发者,这篇文章都将为你打开一扇通往云原生世界的大门。
|
3天前
|
弹性计算 Kubernetes Cloud Native
云原生技术的实践与思考
云原生技术的实践与思考
16 2
|
4天前
|
Kubernetes Cloud Native 持续交付
云原生技术在现代应用架构中的实践与思考
【10月更文挑战第38天】随着云计算的不断成熟和演进,云原生(Cloud-Native)已成为推动企业数字化转型的重要力量。本文从云原生的基本概念出发,深入探讨了其在现代应用架构中的实际应用,并结合代码示例,展示了云原生技术如何优化资源管理、提升系统弹性和加速开发流程。通过分析云原生的优势与面临的挑战,本文旨在为读者提供一份云原生转型的指南和启示。
15 3
|
3天前
|
边缘计算 Cloud Native 安全
云原生技术的未来发展趋势
云原生技术的未来发展趋势
11 1
|
3天前
|
缓存 监控 开发者
掌握Docker容器化技术:提升开发效率的利器
在现代软件开发中,Docker容器化技术成为提升开发效率和应用部署灵活性的重要工具。本文介绍Docker的基本概念,并分享Dockerfile最佳实践、容器网络配置、环境变量和秘密管理、容器监控与日志管理、Docker Compose以及CI/CD集成等技巧,帮助开发者更高效地利用Docker。
|
4天前
|
运维 Kubernetes Cloud Native
云原生技术在现代应用架构中的实践与挑战####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在实际项目中的应用案例,分析了企业在向云原生转型过程中面临的主要挑战及应对策略。不同于传统摘要的概述性质,本摘要强调通过具体实例揭示云原生技术如何促进应用的灵活性、可扩展性和高效运维,同时指出实践中需注意的技术债务、安全合规等问题,为读者提供一幅云原生技术实践的全景视图。 ####
|
5天前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?

相关产品

  • 容器服务Kubernetes版