Sonic 开源移动端云真机测试平台 - 用例编写与回放流程实例演示,任务定时执行、图像相似度定位、公共步骤、公共参数、测试套件等(上)

简介: Sonic 开源移动端云真机测试平台 - 用例编写与回放流程实例演示,任务定时执行、图像相似度定位、公共步骤、公共参数、测试套件等

第一章:Sonic 平台的用例编写与回放

① 项目的创建

点击新建项目创建项目。


f95b58b30b5a48bc9e4acf34cb78bc53.png

2ad199db30294c5b99fb7d65783f27d4.png

49e29723321647e78addbd0e8da4b826.png

② 设备中心选择设备

点击进入设备中心。

fc672129badf4136b8bd524e7f2e506f.png


挑一个空闲设备选择马上使用。


ede645fe56a9438ba1584ecd51f19dfa.png

③ 定位并添加控件

选择控件元素页签,点击获取控件元素。


97e1ffcfe1f24dfbb99678ee3ab850a4.png

95475f864de34e069e01fe1c098971cf.png

选择一种定位方式,把值输入进来,再起个名。

b106c6f7ef114a52a74ded656a1b3647.png

④ 新增用例

选择 UI 自动化页签,点击新增用例按钮。


f265e7a856b34bf287efa8ffc9486fe8.png

8ae8da0701ef4e279ee866e480af667f.png

点击刚才新增的用例进行编辑。

45ce79a812a845b79e43cfd6c39539ca.png

dc5ea063e30d4d589d98e54f14c34ef9.png

12ec6471aac74d8ab765b7fbdf9ee071.png

⑤ 运行用例

我添加了输入手机号和密码的动作。

4a67f78dd3004aba9dc84715040ca1be.png

5cf77c18b5c147bb80f86e432395aa4c.png

⑥ 添加测试套件批量执行脚本

添加测试套件可以批量执行脚本。


31c6ce61c18445678d46cabe524088a1.png

可以关联多个设备和用例。

用例覆盖: 会在所选的设备上随机执行,只要把用例跑完即可。

设备覆盖: 每种设备都会跑一遍用例,保证用例在每种设备兼容性均通过。

766d00d62d5d4fbc98871a03118de02a.png


目录
相关文章
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
45 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
1月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
308 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
84 0
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
46 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
监控 测试技术 数据安全/隐私保护
新产品测试流程如何?
新产品测试流程如何?【10月更文挑战第10天】
92 0
|
7天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
36 3
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
59 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
2月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
238 7
Jmeter实现WebSocket协议的接口测试方法
|
2月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
247 3
快速上手|HTTP 接口功能自动化测试

热门文章

最新文章